Solveeit Logo

Question

Question: If \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are the intersection face diagonals of a cube o...

If a\overrightarrow{a} and b\overrightarrow{b} are the intersection face diagonals of a cube of side x in plane XOY and YOZ, respectively, with respect to reference frame at the point of intersection of the vectors and sides of cube as the axes, the components of vector r=a×b\overrightarrow{r} = \overrightarrow{a} \times \overrightarrow{b} are

A

x, - x, x

B

–x2, -x2, x2

C

x2, - x2, x2

D

x, x2, - x.

Answer

x2, - x2, x2

Explanation

Solution

Here a=xi^+xj^\overrightarrow{a} = x\widehat{i} + x\widehat{j} and b=xj^+xk^\overrightarrow{b} = x\widehat{j} + x\widehat{k} since R\overrightarrow{R}

= a×b\overrightarrow{a} \times \overrightarrow{b} we get R\overrightarrow{R}= i^j^k^xx00xx\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ x & x & 0 \\ 0 & x & x \end{matrix} \right| = x2i^\widehat{i} - x2j^\widehat{j} + x2k^\widehat{k}

Clearly, the components are Rx = x2, Ry = -x2, Rz = x2