Question
Question: If \[\overrightarrow x = 3\hat i - 6\hat j - \hat k\], \[\overrightarrow y = \hat i + 4\hat j - 3\ha...
If x=3i^−6j^−k^, y=i^+4j^−3k^ and z=3i^−4j^−12k^, then the magnitude of the projection of x×y on z is
(A) 12
(B) 15
(C) 14
(D) 13
Solution
Here first we will find the vector x×y using the cross product and then we will find the unit vector of z and then finally we will find the projection of x×y on z.
The unit vector of vector a is given by:-
a^=aa
The projection of vector b on a is given by:-
Projection=b.a^
Complete step-by-step answer:
The vector x is given by:-
x=3i^−6j^−k^
The vector y is given by:-
y=i^+4j^−3k^
Now we will find the vector x×y
The cross product of x and y is given by:-
\overrightarrow x \times \overrightarrow y = \hat i\left[ {18 + 4} \right] - \hat j\left[ { - 9 + 1} \right] + \hat k\left[ {12 + 6} \right] \\
\Rightarrow \overrightarrow x \times \overrightarrow y = 22\hat i + 8\hat j + 18\hat k \\
\left| {\overrightarrow z } \right| = \sqrt {9 + 16 + 144} \\
\Rightarrow \left| {\overrightarrow z } \right| = \sqrt {169} \\
\Rightarrow \left| {\overrightarrow z } \right| = 13 \\
\hat i.\hat i = \hat j.\hat j = \hat k.\hat k = 1 \\
\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0 \\
{\text{Projection}} = \dfrac{{22\left( 3 \right) + 8\left( { - 4} \right) + 18\left( { - 12} \right)}}{{13}} \\
\Rightarrow {\text{Projection}} = \dfrac{{66 - 32 - 216}}{{13}} \\
\Rightarrow {\text{Projection}} = \dfrac{{ - 182}}{{13}} \\
\left| {{\text{Projection}}} \right| = \left| {\dfrac{{ - 182}}{{13}}} \right| \\
\Rightarrow \left| {{\text{Projection}}} \right| = 14 \\