Solveeit Logo

Question

Question: If \( \overrightarrow r = \left( {x + y + 2} \right)\widehat i + \left( {2x - y + 3} \right)\widehat...

If r=(x+y+2)i^+(2xy+3)j^+(x+2y+7)k^\overrightarrow r = \left( {x + y + 2} \right)\widehat i + \left( {2x - y + 3} \right)\widehat j + \left( {x + 2y + 7} \right)\widehat k
Where r.i^=3,r.j^=5\overrightarrow r .\widehat i = 3,\overrightarrow r .\widehat j = 5 then r.k^=\overline r .\widehat k =
(A) 44
(B) 66
(C) 99
(D) 88

Explanation

Solution

Hint : This type of question will be solved by using dot product properties. Remember the vector multiplication is nowhere similar to that of scalar multiplication as it involves direction along with magnitude.

Complete step-by-step answer :
In this question given that
r=(x+y+2)i^+(2xy+3)j^+(x+2y+7)k^\overrightarrow r = \left( {x + y + 2} \right)\widehat i + \left( {2x - y + 3} \right)\widehat j + \left( {x + 2y + 7} \right)\widehat k . . . (1)
and
r.i^=3\overrightarrow r .\widehat i = 3
r.j^=5\overrightarrow r .\widehat j = 5
r.k^=?\overrightarrow r .\widehat k = ?
Multiply equation (1) by i^\widehat i
r.i^=(x+y+2)i^.i^+(2xy+3)j^.i^+(x+2y+7)k^.i^\Rightarrow \overrightarrow r .\widehat i = \left( {x + y + 2} \right)\widehat i.\widehat i + \left( {2x - y + 3} \right)\widehat j.\widehat i + \left( {x + 2y + 7} \right)\widehat k.\widehat i . . . (2)
i^.i^=i^i^cosθ=1\widehat i.\widehat i = \left| {\widehat i} \right|\left| {\widehat i} \right|\cos \theta = 1 (θ=0(\because \theta = 0 and cos0=1)\cos 0 = 1)
i^.j^=i^j^cosθ=0\widehat i.\widehat j = \left| {\widehat i} \right|\left| {\widehat j} \right|\cos \theta = 0 (θ=900(\because \theta = {90^0} and cos900=0)\cos {90^0} = 0)
Similarly, i^.k^=0\widehat i.\widehat k = 0
By the above rule we can simplify equation (2) as,
3=x+y+2+0+0\Rightarrow 3 = x + y + 2 + 0 + 0
On simplifying we get the
x+y=1x + y = 1 . . . . (3)
Now,
Multiply equation (1) by j^\widehat j
r.j^=(x+y+2)i^.j^+(2xy+3)j^.j^+(x+2y+7)k^.j^\overrightarrow r .\widehat j = \left( {x + y + 2} \right)\widehat i.\widehat j + \left( {2x - y + 3} \right)\widehat j.\widehat j + \left( {x + 2y + 7} \right)\widehat k.\widehat j
From the explanation we gave above, we can write
i^.j^=j^.k^=0\widehat i.\widehat j = \widehat j.\widehat k = 0 and j^.j^=1\widehat j.\widehat j = 1
5=0+2xy+3+0\Rightarrow 5 = 0 + 2x - y + 3 + 0
On simplifying the above equation, we get
2xy+3=52x - y + 3 = 5
2xy=2\Rightarrow 2x - y = 2 . . . (4)
Now, multiply equation (1) by k^\widehat k
r.k^=(x+y+2)i^.k^+(2xy+3)j^.k^+(x+2y+7)k^.k^\overrightarrow r .\widehat k = \left( {x + y + 2} \right)\widehat i.\widehat k + \left( {2x - y + 3} \right)\widehat j.\widehat k + \left( {x + 2y + 7} \right)\widehat k.\widehat k
Again, From the explanation we gave above, we can write
i^.k^=j^.k^=0\widehat i.\widehat k = \widehat j.\widehat k = 0 and k^.k^=1\widehat k.\widehat k = 1
r.k^=0+0+x+2y+7\Rightarrow \overrightarrow r .\widehat k = 0 + 0 + x + 2y + 7
r.k^=x+2y+7\Rightarrow \overrightarrow r .\widehat k = x + 2y + 7 . . . (5)
Adding equation (3) and (4), we get
3x=33x = 3
x=1\Rightarrow x = 1
Put this value of xx in equation (3)
1+y=1\Rightarrow 1 + y = 1
y=0\Rightarrow y = 0
By substituting these values of xx and yy in equation (5) we get
r.k^=1+2×0+7\Rightarrow \overrightarrow r .\widehat k = 1 + 2 \times 0 + 7
r.k^=1+7\Rightarrow \overrightarrow r .\widehat k = 1 + 7
r.k^=8\Rightarrow \overrightarrow r .\widehat k = 8
Therefore, from the above explanation, the correct answer is option (D) 88

So, the correct answer is “Option D”.

Note : Unit vectors i^,j^\widehat i,\widehat j and k^\widehat k represent positive X, Y and Z axis, respectively. Therefore, they are perpendicular to each other. Dot product of two perpendicular vectors is zero, since the angle between them is 900{90^0} and cos900=0\cos {90^0} = 0 .
Perpendicular vectors are also called orthogonal vectors.