Solveeit Logo

Question

Question: If \(| \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } | = | \overrightarrow ...

If A+B=AB| \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } | = | \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } | , then the angle between will be

A

3030 ^ { \circ }

B

4545 ^ { \circ }

C

6060 ^ { \circ }

D

9090 ^ { \circ }

Answer

9090 ^ { \circ }

Explanation

Solution

Let θ\theta be the angle between the vectors and .

Then

AB=A2+B2+2ABcosθ| \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } | = \sqrt { \mathrm { A } ^ { 2 } + \mathrm { B } ^ { 2 } + 2 \mathrm { AB } \cos \theta }

A+B=A2+B22ABcosθ| \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } | = \sqrt { \mathrm { A } ^ { 2 } + \mathrm { B } ^ { 2 } - 2 \mathrm { AB } \cos \theta }

According to given problem

A+B=AB| \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } | = | \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } |

A2+B2+2ABcosθ=A2+B22ABcosθ\therefore \sqrt { \mathrm { A } ^ { 2 } + \mathrm { B } ^ { 2 } + 2 \mathrm { AB } \cos \theta } = \sqrt { \mathrm { A } ^ { 2 } + \mathrm { B } ^ { 2 } - 2 \mathrm { AB } \cos \theta } Squaring both sides, we get

As A

θ=π2\theta = \frac { \pi } { 2 }