Solveeit Logo

Question

Question: If \(\overrightarrow { \mathrm { a } }\) = \(\hat { \mathrm { i } }\) + <img src="https://cdn.pure...

If a\overrightarrow { \mathrm { a } } = i^\hat { \mathrm { i } } + + and b\overrightarrow { \mathrm { b } } = i^\hat { \mathrm { i } } – 2 +, then the vector such that. c\overrightarrow { \mathrm { c } } = 2 and × c\overrightarrow { \mathrm { c } } = b\overrightarrow { \mathrm { b } } is-

A

13\frac { 1 } { 3 } ( i^\hat { \mathrm { i } } – 2 + )

B

13\frac { 1 } { 3 } (– i^\hat { \mathrm { i } } + 2 + 5)

C

13\frac { 1 } { 3 } ( i^\hat { \mathrm { i } } + 2 – 5)

D

13\frac { 1 } { 3 } (– i^\hat { \mathrm { i } } + 2 – 5)

Answer

13\frac { 1 } { 3 } (– i^\hat { \mathrm { i } } + 2 + 5)

Explanation

Solution

× =× (× c\overrightarrow { \mathrm { c } } ) = (. c\overrightarrow { \mathrm { c } } )– (.) c\overrightarrow { \mathrm { c } }

= 2 – 3 c\overrightarrow { \mathrm { c } }

× = = 3 i^\hat { \mathrm { i } } – 3

\ c\overrightarrow { \mathrm { c } } =13\frac { 1 } { 3 } (2 × ) = 13\frac { 1 } { 3 } (– i^\hat { \mathrm { i } } + 2 + 5)