Solveeit Logo

Question

Question: If \[\overrightarrow e = l\overrightarrow i + m\overrightarrow j + n\overrightarrow k \]is a unit ve...

If e=li+mj+nk\overrightarrow e = l\overrightarrow i + m\overrightarrow j + n\overrightarrow k is a unit vector, then the maximum value of lm+mn+nllm + mn + nl is
A)12 \dfrac{-1}{2}
B) 0
C) 1
D) None of these

Explanation

Solution

Hint: First we will calculate the magnitude of the given vector and put it equal to 1 and then apply the relation between A.M and G.M of three numbers to get the desired answer.
The relation between AM and GM is given by:
A.MG.MA.M \geqslant G.M

Complete step by step solution:
The given vector is :
e=li+mj+nk\overrightarrow e = l\overrightarrow i + m\overrightarrow j + n\overrightarrow k
The magnitude of the vector v=ai+bj+ck\overrightarrow v = a\overrightarrow i + b\overrightarrow j + c\overrightarrow k is given by:
v=a2+b2+c2|\overrightarrow v | = \sqrt {{a^2} + {b^2} + {c^2}}
Applying this formula for given vector we get:
e=l2+m2+n2|\overrightarrow e | = \sqrt {{l^2} + {m^2} + {n^2}}
Since the magnitude of given vector is equal to 1 therefore,

l2+m2+n2=1 l2+m2+n2=1.........(1)  \sqrt {{l^2} + {m^2} + {n^2}} = 1 \\\ {l^2} + {m^2} + {n^2} = 1.........\left( 1 \right) \\\

Now calculating the Arithmetic mean of l2,m2,n2{l^2},{m^2},{n^2} we get:
A.M=l2+m2+n23A.M = \dfrac{{{l^2} + {m^2} + {n^2}}}{3}
Now calculating Geometric mean of l2,m2,n2{l^2},{m^2},{n^2} we get:
G.M=l2m2n23G.M = \sqrt[3]{{{l^2}{m^2}{n^2}}}
Now since A.MG.MA.M \geqslant G.M therefore,
l2+m2+n23l2m2n23\dfrac{{{l^2} + {m^2} + {n^2}}}{3} \geqslant \sqrt[3]{{{l^2}{m^2}{n^2}}}
According to equation 1 we get:
13l2m2n23\dfrac{1}{3} \geqslant \sqrt[3]{{{l^2}{m^2}{n^2}}} (relation 1)
Now applying the relation of AM and GM for we get:

A.M=lm+mn+nl3 G.M=(lm)(mn)(nl)3 G.M=l2m2n23  A.M = \dfrac{{lm + mn + nl}}{3} \\\ G.M = \sqrt[3]{{\left( {lm} \right)\left( {mn} \right)\left( {nl} \right)}} \\\ G.M = \sqrt[3]{{{l^2}{m^2}{n^2}}} \\\

And since A.MG.MA.M \geqslant G.M therefore,
lm+mn+nl3l2m2n23\dfrac{{lm + mn + nl}}{3} \geqslant \sqrt[3]{{{l^2}{m^2}{n^2}}} (relation 2)
Comparing relation 1 and relation 2 we get:

lm+mn+nl313 lm+mn+nl1  \dfrac{{lm + mn + nl}}{3} \leqslant \dfrac{1}{3} \\\ lm + mn + nl \leqslant 1 \\\

Therefore the maximum value of lm+mn+nllm + mn + nl is 1.
Hence option (C) is the correct option.

Note:
The arithmetic mean of numbers is always greater than their geometric mean.
Arithmetic mean of a1,a2,......ana1,a2,......an is:
AM=a1+a2......+annAM = \dfrac{{a1 + a2...... + an}}{n}
Geometric mean of a1,a2,......ana1,a2,......an is:
GM=a1a2......annGM = \sqrt[n]{{a1a2......an}}