Solveeit Logo

Question

Question: If \[\overrightarrow \alpha = 3\hat i + 4\hat j + 5\hat k\] and \[\overrightarrow \beta = 2\hat i + ...

If α=3i^+4j^+5k^\overrightarrow \alpha = 3\hat i + 4\hat j + 5\hat k and β=2i^+j^4k^\overrightarrow \beta = 2\hat i + \hat j - 4\hat k, then express β\overrightarrow \beta in the form of β=β1+β2\overrightarrow \beta = \overrightarrow {{\beta _1}} + \overrightarrow {{\beta _2}} , where, β1{\overrightarrow \beta _1} is parallel to α\overrightarrow \alpha and β2{\overrightarrow \beta _2} is perpendicular to α\overrightarrow \alpha .

Explanation

Solution

Let us consider two vectors A,B\overrightarrow A ,\overrightarrow B be two parallel vectors. Then they are scalar multiple of one another.
That is, A=kB\overrightarrow A = k\overrightarrow B or B=cA\overrightarrow B = c\overrightarrow A , where kk and cc are scalar constants.
Let us consider two vectors A,B\overrightarrow A ,\overrightarrow B . They are called perpendicular vector if and only if A.B=0\overrightarrow A .\overrightarrow B = 0.

Complete step-by-step answer:
It is given that,
α=3i^+4j^+5k^\overrightarrow \alpha = 3\hat i + 4\hat j + 5\hat k and β=2i^+j^4k^\overrightarrow \beta = 2\hat i + \hat j - 4\hat k
Also, β\overrightarrow \beta in the form of β=β1+β2\overrightarrow \beta = \overrightarrow {{\beta _1}} + \overrightarrow {{\beta _2}} , where, β1{\overrightarrow \beta _1} is parallel to α\overrightarrow \alpha and β2{\overrightarrow \beta _2} is perpendicular to α\overrightarrow \alpha .
Since, β1{\overrightarrow \beta _1} is parallel to α\overrightarrow \alpha
β1{\overrightarrow \beta _1} can be written as β1=λα{\overrightarrow \beta _1} = \lambda \overrightarrow \alpha , where, λ\lambda is any scalar.
So let us multiply λ\lambda to a vector value of A, β1=3λi^+4λj^+5λk^{\overrightarrow \beta _1} = 3\lambda \hat i + 4\lambda \hat j + 5\lambda \hat k
Again, β=β1+β2\overrightarrow \beta = \overrightarrow {{\beta _1}} + \overrightarrow {{\beta _2}}
Let us consider the Substitution of the values of given vectors we get,
2i^+j^4k^=3λi^+4λj^+5λk^+β22\hat i + \hat j - 4\hat k = 3\lambda \hat i + 4\lambda \hat j + 5\lambda \hat k + {\overrightarrow \beta _2}
Here we are going to simplify in order to get β2{\overrightarrow \beta _2},
β2=(23λ)i^+(14λ)j^(4+5λ)k^{\overrightarrow \beta _2} = (2 - 3\lambda )\hat i + (1 - 4\lambda )\hat j - (4 + 5\lambda )\hat k
As per the given condition, β2{\overrightarrow \beta _2} is perpendicular to α\overrightarrow \alpha
Then, β2.α=0{\overrightarrow \beta _2}.\overrightarrow \alpha = 0
Substituting the values of given vectors to get the result we get,
(23λ).3+(14λ).4(4+5λ).5=0(2 - 3\lambda ).3 + (1 - 4\lambda ).4 - (4 + 5\lambda ).5 = 0
Now we are going to simplify the above term, we get,
69λ+416λ2025λ=06 - 9\lambda + 4 - 16\lambda - 20 - 25\lambda = 0
Simplifying again the above term, we get,
1050λ=0- 10 - 50\lambda = 0
Therefore,
λ=15\lambda = \dfrac{{ - 1}}{5}
Now, to find the values of β1{\overrightarrow \beta _1} and β2{\overrightarrow \beta _2} we will substitute the value of λ\lambda .
So, we get as,
β1=35i^+45j^k^{\overrightarrow \beta _1} = \dfrac{{ - 3}}{5}\hat i + \dfrac{{ - 4}}{5}\hat j - \hat k
And, β2=(2+35)i^+(1+45)j^(41)k^{\overrightarrow \beta _2} = (2 + \dfrac{3}{5})\hat i + (1 + \dfrac{4}{5})\hat j - (4 - 1)\hat k
Solving the above to get the desired result, we get,
β2=135i^+95j^3k^{\overrightarrow \beta _2} = \dfrac{{13}}{5}\hat i + \dfrac{9}{5}\hat j - 3\hat k
Therefore,
2i^+j^4k^=(35i^+45j^k^)+(135i^+95j^3k^)2\hat i + \hat j - 4\hat k = (\dfrac{{ - 3}}{5}\hat i + \dfrac{{ - 4}}{5}\hat j - \hat k) + (\dfrac{{13}}{5}\hat i + \dfrac{9}{5}\hat j - 3\hat k)

Note: Let us consider two vectors A,B\overrightarrow A ,\overrightarrow B . Then the dot product of them is,
A.B=A.B.cosθ\overrightarrow A .\overrightarrow B = \left| A \right|.\left| B \right|.\cos \theta
θ\theta be the angle between them.
In vector, i^,j^,k^\hat i,\hat j,\hat k are the unit vectors of the axes X, Y, Z respectively.
Then by the conditions of dot product of vectors we get,
i^.i^=i^.i^.cos0=1\hat i.\hat i = \left| {\hat i} \right|.\left| {\hat i} \right|.\cos {0^ \circ } = 1
Similarly, j^.j^=1,k^.k^=1\hat j.\hat j = 1,\hat k.\hat k = 1
Again, i^.j^=i^.j^.cos90=0\hat i.\hat j = \left| {\hat i} \right|.\left| {\hat j} \right|.\cos {90^ \circ } = 0
Similarly, j^.k^=k^.i^=0\hat j.\hat k = \hat k.\hat i = 0