Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a, b, c\overrightarrow{a},\text{ }\overrightarrow{b},\text{ }\overrightarrow{c} are non-coplanar and (a+λb).[(b+3c)×(c×4a)]=0,(\overrightarrow{a}+\lambda \overrightarrow{b}).[(\overrightarrow{b}+3\overrightarrow{c})\times (\overrightarrow{c}\times 4\overrightarrow{a})]=0, then the value of λ\lambda is equal to

A

00

B

112\frac{1}{12}

C

512\frac{5}{12}

D

33

Answer

112\frac{1}{12}

Explanation

Solution

Given, (a+λb).[(b+3c)×(c4a)]=0(\overrightarrow{a}+\lambda \overrightarrow{b}).[(\overrightarrow{b}+3\overrightarrow{c})\times (\overrightarrow{c}-4\overrightarrow{a})]=0
\Rightarrow (a+λb).[b×c4b×a12c×a]=0(\overrightarrow{a}+\lambda \overrightarrow{b}).[\overrightarrow{b}\times \overrightarrow{c}-4\overrightarrow{b}\times \overrightarrow{a}-12\overrightarrow{c}\times \overrightarrow{a}]=0
\Rightarrow [abc]00+0+012λ[bca]=0[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]-0-0+0+0-12\lambda [\overrightarrow{b}\overrightarrow{c}a]=0
\Rightarrow [abc]=12λ[abc][\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]=12\lambda [\overrightarrow{a}\,\overrightarrow{b}\,\overrightarrow{c}]
\Rightarrow λ=112\lambda =\frac{1}{12}