Solveeit Logo

Question

Question: If \(\overrightarrow a ,\overrightarrow b \) vectors perpendicular to each other and \(\left| {\over...

If a,b\overrightarrow a ,\overrightarrow b vectors perpendicular to each other and a=2,b=3,c×a=b\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3,\overrightarrow c \times \overrightarrow a = \overrightarrow b then the least value of 2ca2\left| {\overrightarrow c - \overrightarrow a } \right| is

Explanation

Solution

To find the value of 2ca\left| {\overrightarrow c - \overrightarrow a } \right|, calculate the value of ca2{\left| {\overrightarrow c - \overrightarrow a } \right|^2} and take square root of that value and multiply it with 2.
You can find the value of ca2{\left| {\overrightarrow c - \overrightarrow a } \right|^2}by the formula given below:
ca2=(ca)(ca)\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)

Complete step by step answer:

Let us see what is given in the question, we have given the value of a&b|\overrightarrow a |\& |\overrightarrow b |as follows
a=2\Rightarrow |\overrightarrow a | = 2and
b=3\Rightarrow |\overrightarrow b | = 3
First of all, find the value of ca2{\left| {\overrightarrow c - \overrightarrow a } \right|^2}i.e.
ca2=(ca)(ca)\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)
By opening the bracket and applying distributive property we get,
ca2=c(ca)a(ca) ca2=c.cc.aa.c+a.a  \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c \left( {\overrightarrow c - \overrightarrow a } \right) - \overrightarrow a \left( {\overrightarrow c - \overrightarrow a } \right) \\\ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c .\overrightarrow a - \overrightarrow a .\overrightarrow c + \overrightarrow a .\overrightarrow a \\\
As a.c=c.a\overrightarrow a .\overrightarrow c = \overrightarrow c .\overrightarrow a then we get,
ca2=c.cc..ac.a+aa\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c ..\overrightarrow a - \overrightarrow c .\overrightarrow a + \overrightarrow a \overrightarrow a
ca2=c22c.a+a2\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2}…….(1)
Now, we have to find the value of a.c\overrightarrow a .\overrightarrow c as given below
The dot product of a and c is given by
c.a=cacosθ\Rightarrow \overrightarrow c .\overrightarrow a = |\overrightarrow c ||\overrightarrow a |\cos \theta, where θ\theta is the angle between a and c.
Putting the value a=2|\overrightarrow a | = 2 in this we get,
c.a=2ccosθ\Rightarrow \overrightarrow c .\overrightarrow a = 2|\overrightarrow c |\cos \theta
Now find the value of c{\left| {\overrightarrow c } \right|^{}}by scalar product i.e.
b=c×a=casinθ\Rightarrow \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| \times \left| {\overrightarrow a } \right| = \left| {\overrightarrow c } \right|\left| {\overrightarrow a } \right|\sin \theta
Putting the value of a&b|\overrightarrow a |\& |\overrightarrow b | we get,
3=2.csinθ\Rightarrow 3 = 2.\left| {\overrightarrow c } \right|\sin \theta
c=32sinθ\Rightarrow \left| {\overrightarrow c } \right| = \dfrac{3}{{2\sin \theta }}
Put the value of a&c|\overrightarrow a |\& |\overrightarrow c | in equation (1) we get,
ca2=c22c.a+a2=c22.cacosθ+a2\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2} = {\overrightarrow {\left| c \right|} ^2} - 2.\overrightarrow {\left| c \right|} \overrightarrow {\left| a \right|} \cos \theta + {\overrightarrow {\left| a \right|} ^2}=
ca2=(32sinθ)22(32sinθ).2cosθ+22\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {(\dfrac{3}{{2\sin \theta }})^2} - 2(\dfrac{3}{{2\sin \theta }}).2\cos \theta + {2^2}
ca2=(94sin2θ)(3sinθ).2cosθ+22 ca2=94sin2θ6cosθsinθ+4 ca=94sin2θ6cosθsinθ+4 2ca=294sin2θ6cosθsinθ+4  \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = (\dfrac{9}{{4{{\sin }^2}\theta }}) - (\dfrac{3}{{\sin \theta }}).2\cos \theta + {2^2} \\\ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4 \\\ \Rightarrow \left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\\ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\\
2ca=4×94sin2θ4×6×cosθsinθ+4×4 2ca=9sin2θ24×cosθsinθ+16=9cosec2θ24×cotθ+16  \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{{4 \times 9}}{{4{{\sin }^2}\theta }} - \dfrac{{4 \times 6 \times \cos \theta }}{{sin\theta }} + 4 \times 4} \\\ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{{{\sin }^2}\theta }} - \dfrac{{24 \times \cos \theta }}{{sin\theta }} + 16} = \sqrt {9\cos e{c^2}\theta - 24 \times \cot \theta + 16} \\\
As cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta , 1sin2θ=cosec2θ\dfrac{1}{{{{\sin }^2}\theta }} = \cos e{c^2}\theta and cosec2θ=cot2θ+1\cos e{c^2}\theta = {\cot ^2}\theta + 1 we get,
2ca=9(1+cot2θ)24×cotθ+16=9+16+9cot2θ24cotθ 2ca=9cot2θ24cotθ+25  \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9(1 + {{\cot }^2}\theta ) - 24 \times \cot \theta + 16} = \sqrt {9 + 16 + 9{{\cot }^2}\theta - 24\cot \theta } \\\ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9{{\cot }^2}\theta - 24\cot \theta + 25} \\\
As, the minimum value of cotθ\cot \theta is zero at θ=π2\theta = \dfrac{\pi }{2}. Therefore,
2ca=9×cot2π224cotπ2+25\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9 \times {{\cot }^2}\dfrac{\pi }{2} - 24\cot \dfrac{\pi }{2} + 25}
As the minimum value of this vector can be obtained by putting θ=π2\theta = \dfrac{\pi }{2}.
2ca=25=5\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {25} = 5
Hence, 5 is the least value of 2ca2\left| {\overrightarrow c - \overrightarrow a } \right|.

Note: Some students get confused in cross and dot product as in the question it is already given that cross product of a and c is b. Some students consider it as a dot product and take cosine function. Your answer can get wrong. Secondly, while taking square we will take two vectors and we consider it as a dot product and use the cosine function. Take care of these things.
Types of vectors are given as follows:
Zero or Null Vector: When starting and ending points of a vector are the same is called zero or null vector.
Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is the same in like vectors.