Solveeit Logo

Question

Question: If \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) are unit vectors such that \(\overri...

If a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c are unit vectors such that a.b=0=a.c\overrightarrow a .\overrightarrow b = 0 = \overrightarrow a .\overrightarrow c and the angle between b\overrightarrow b and c\overrightarrow c is π3\dfrac{\pi }{3}, then find the value of a×ba×c\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \overrightarrow c } \right|.

Explanation

Solution

In order to find the values of the given terms, first simplify the terms given, for example unit vectors, which means value is one, that is a,b,c=1\overrightarrow {\left| a \right|} ,\left| {\overrightarrow b } \right|,\left| {\overrightarrow c } \right| = 1, then a.b=0\overrightarrow a .\overrightarrow b = 0, which gives that a,b\overrightarrow a ,\overrightarrow b are perpendicular to each other. Then using the scalar and dot product solves the values.

Formula used:

  1. Dot product: a.b=abcosθ\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta
  2. Cross product: a×b=absinθ\overrightarrow a \times \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\sin \theta

Complete step by step solution:
We are given with unit vectors a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c , that means:

a=1 b=1 c=1  \overrightarrow {\left| a \right|} = 1 \\\ \left| {\overrightarrow b } \right| = 1 \\\ \left| {\overrightarrow c } \right| = 1 \\\

Next, given a.b=0=a.c\overrightarrow a .\overrightarrow b = 0 = \overrightarrow a .\overrightarrow c . From dot product formula we know that, a.b=abcosθ\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta .
Substituting the value of a=1,b=1\overrightarrow {\left| a \right|} = 1,\left| {\overrightarrow b } \right| = 1 and a.b=0\overrightarrow a .\overrightarrow b = 0 in a.b=abcosθ\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta , where θ\theta is the angle between a,b\overrightarrow a ,\overrightarrow b , we get:
a.b=abcosθ 0=1.1.cosθ cosθ=0 θ=π2  \overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta \\\ 0 = 1.1.\cos \theta \\\ \cos \theta = 0 \\\ \theta = \dfrac{\pi }{2} \\\
That means a,b\overrightarrow a ,\overrightarrow b are perpendicular to each other.
Similarly, for the a.c=0\overrightarrow a .\overrightarrow c = 0.
Substituting the value of a=1,c=1\overrightarrow {\left| a \right|} = 1,\left| {\overrightarrow c } \right| = 1 and a.c=0\overrightarrow a .\overrightarrow c = 0 in a.c=accosϕ\overrightarrow a .\overrightarrow c = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\cos \phi where ϕ\phi is the angle between a,c\overrightarrow a ,\overrightarrow c , we get:
a.c=accosϕ 0=1.1.cosϕ cosϕ=0 cosϕ=π2  \overrightarrow a .\overrightarrow c = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\cos \phi \\\ 0 = 1.1.\cos \phi \\\ \cos \phi = 0 \\\ \cos \phi = \dfrac{\pi }{2} \\\
Which also depicts that a,c\overrightarrow a ,\overrightarrow c are perpendicular to each other.

We need to find the value of a×ba×c\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \overrightarrow c } \right|.
From cross product, we know that a×b=absinθ\overrightarrow a \times \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\sin \theta and a×c=acsinϕ\overrightarrow a \times \overrightarrow c = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \phi
Substituting the value of a=1,b=1\overrightarrow {\left| a \right|} = 1,\left| {\overrightarrow b } \right| = 1 and θ=π2\theta = \dfrac{\pi }{2} in a×b=absinθ\overrightarrow a \times \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\sin \theta , we get:

a×b=absinθ a×b=1.1.sinπ2 a×b=1  \overrightarrow a \times \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\sin \theta \\\ \overrightarrow a \times \overrightarrow b = 1.1.\sin \dfrac{\pi }{2} \\\ \overrightarrow a \times \overrightarrow b = 1 \\\

Similarly, Substituting the value of a=1,c=1\overrightarrow {\left| a \right|} = 1,\left| {\overrightarrow c } \right| = 1 and ϕ=π2\phi = \dfrac{\pi }{2} in a×c=acsinϕ\overrightarrow a \times \overrightarrow c = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \phi , we get:

a×c=acsinϕ a×c=1.1.sinπ2 a×c=1  \overrightarrow a \times \overrightarrow c = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \phi \\\ \overrightarrow a \times \overrightarrow c = 1.1.\sin \dfrac{\pi }{2} \\\ \overrightarrow a \times \overrightarrow c = 1 \\\

Substituting the above obtained value in a×ba×c\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \overrightarrow c } \right|, we get:
a×ba×c=11=0\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \overrightarrow c } \right| = \left| {1 - 1} \right| = 0
Therefore, the value of a×ba×c=0\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \overrightarrow c } \right| = 0.

Note:

Since, there was no use of the angle between bb and cc, so no need to use any of the steps of the solving process.
We cannot use θ\theta , in every angle as different angles between different vectors is represented uniquely.
Always prefer solving step by step for ease rather than solving at once.