Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} are non-coplanar unit vectors such that a×(b×c)=(b+c)2\overrightarrow{a}\times (\overrightarrow{b} \times\overrightarrow{c}) =\frac{(\overrightarrow{b} +\overrightarrow{c})}{\sqrt 2} then the angle between a\overrightarrow{a} and b\overrightarrow{b} is

A

3p4\frac{3p}{4}

B

p4\frac{p}{4}

C

p2\frac{p}{2}

D

pp

Answer

3p4\frac{3p}{4}

Explanation

Solution

Since, a×(b×c)=(b+c)2 \, \, \, \, \, \, \, \overrightarrow{a}\times (\overrightarrow{b} \times\overrightarrow{c}) =\frac{(\overrightarrow{b} +\overrightarrow{c})}{\sqrt 2}
(a.c)b(a.b)c=12b+12c\Rightarrow \, \, \, \, \, \, (\overrightarrow{a}.\overrightarrow{c}) \overrightarrow{b}- (\overrightarrow{a} .\overrightarrow{b}) \overrightarrow{c} =\frac{1}{\sqrt 2}\overrightarrow{b} +\frac{1}{\sqrt 2}\overrightarrow{c}
On equating the coefficient of c\overrightarrow{c} we get
\hspace20mm \overrightarrow{a}.\overrightarrow{b}= - \frac{1}{\sqrt 2} \Rightarrow \, \, \, |\overrightarrow{a}|| \overrightarrow{b}| \, cos \theta =\frac{1}{\sqrt 2}
\therefore \hspace15mm cos \theta = - \frac{1}{\sqrt 2} \Rightarrow \, \theta =\frac{3p}{4}