Solveeit Logo

Question

Question: If \[\overrightarrow{a}\overrightarrow{,b},\overrightarrow{c}\] are mutually perpendicular vectors o...

If a,b,c\overrightarrow{a}\overrightarrow{,b},\overrightarrow{c} are mutually perpendicular vectors of equal magnitude, then a+b+c\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} is equally inclined to
(a). a\overrightarrow{a} only
(b). a,c\overrightarrow{a},\overrightarrow{c} only
(c). All a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}
(d). None of these

Explanation

Solution

First of all we have to determine the relation between the vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} as in the mutually perpendicular case. Then we have to assume that a=b=c\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right| which is equal to its constant. Then we have to determine the sum of the square for a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}. After that you have to use the formula for finding the angle between the vectors a\overrightarrow{a} and (a+b+c),b\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right),\overrightarrow{b} and (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) and c(a+b+c)c\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right). Now use can easily find out the vector which is equally inclined.

Complete step by step solution:
In the given question we have given that vectors are equal in magnitudes a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} are of equal magnitudes
So, a=b=c\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|
Also as per given in the question a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} are mutually perpendicular to each other.
So, a.b=b.c=c.a=0\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0
Now we know that
(a+b+c).a=a+b+cacosα\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right).\overrightarrow{a}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha Where α=angle\alpha =angle between (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) and a\overrightarrow{a}.
Now we will open the bracket of the light hand side and the resulted equation will be,
a,a+b.a+c.a=a+b+cacosα.............(i)\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{a}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha .............\left( i \right)
Now we will use the property of vectors
Property: a.b=b.a\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a} and a,a=a2\overrightarrow{a},\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}} apply the properties on equation (i)
a2+0+0=a+b+cacosα\Rightarrow {{\left| \overrightarrow{a} \right|}^{2}}+0+0=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha
Now we will find the value of cosα\cos \alpha from the above equation
cosα=aa+b+c\Rightarrow \cos \alpha =\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}
Now we will take
(a+b+c),b=a+b+cbcosβ\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right),\overrightarrow{b}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta Where β=angle\beta =angle between (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) and b\overrightarrow{b}.
Now we will open the bracket of the left-handed side and the resulted equation will be,
a.b+b.b+c.b=a+b+cbcosβ........(ii)\Rightarrow \overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{b}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta ........(ii)
Now we will again use the property of vectors
Property: a,b=b.a\overrightarrow{a},\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a} and a.a=a2\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}} apply these properties on equation (ii)
0+b2+0=a+b+cbcosβ\Rightarrow 0+\left| {{\overrightarrow{b}}^{2}} \right|+0=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta
Now we will find the value of cosβ\cos \beta from the above equation
cosβ=ba+b+c\Rightarrow \cos \beta =\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}
Now we will take
(a+b+b).c=a+b+cbcosγ\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{b} \right).\overrightarrow{c}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \gamma Where γ=\gamma = angle between (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) and c\overrightarrow{c}.
Now we will open the bracket of the left hand side and the resulted equation will be,
a.c+b.c=c.c=a+b+cccosγ.........(iii)\Rightarrow \overrightarrow{a}.\overrightarrow{c}+\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{c}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos \gamma .........(iii)
Now we will again use the property of vectors
Property: a.b=b.a\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a} and a.a=a2\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}} apply the perpendicular on equation (iii)
0+0+c2=a+b+cccosγ\Rightarrow 0+0+{{\left| \overrightarrow{c} \right|}^{2}}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos \gamma
Now we will find the value of cosγ\cos \gamma from the above equation
cosγ=ca+b+c\Rightarrow \cos \gamma =\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}
As calculated above in the question
cosα=aa+b+c,cosβ=ba+b+c,cosγ=ca+b+c\Rightarrow \cos \alpha =\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|},\cos \beta =\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|},\cos \gamma =\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}
According to the information given in the question we know the
a=b=c\Rightarrow \left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|
Thus we can say that cosα=cosβ=cosγ\cos \alpha =\cos \beta =\cos \gamma and according to the above equation we can say that
α=β=γ\Rightarrow \alpha =\beta =\gamma
Therefore, (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) is equation inclined to a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}.

So, the correct answer is “Option c”.

Note: We know that the dot product in between 22 unit vectors is very simple to compute. If the vector is length type then we have 33 vector of dot product i.e. i.j,k\overrightarrow{i}.\overrightarrow{j},\overrightarrow{k}. It becomes, i,i=j.j=k.k=1\overrightarrow{i},\overrightarrow{i}=\overrightarrow{j}.\overrightarrow{j}=\overrightarrow{k}.\overrightarrow{k}=1 if vector are of length a\overrightarrow{a} then, we get i,i=j.j=k.k=a\overrightarrow{i},\overrightarrow{i}=\overrightarrow{j}.\overrightarrow{j}=\overrightarrow{k}.\overrightarrow{k}=a.