Solveeit Logo

Question

Question: If \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system...

If a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c form a left-handed orthogonal system anda.a=4,b.b=9,c.c=16\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16, then find the value of[a,b,c]\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]
A. 2424
B. 24 - 24
C. 1212
D. 12 - 12

Explanation

Solution

Initially, we will find the magnitude of each vector. Then using some formulas which are mentioned below, we will find our required answer.

Used formula: a.a=a2\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}
b×c=bcsinθ\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta
[a,b,c]=a.(b×c)\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )

Complete answer:.It is given that, a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c form a left-handed orthogonal system.
Also provided that, a.a=4,b.b=9,c.c=16\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16
We know that,
a.a=a2\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2},
So, according to the problem using the values given we get, a.a=a2=4\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4
So, we have, a=2{\left| {\overrightarrow a } \right|} = 2
Similarly, we will find b=3{\left| {\overrightarrow b } \right|} = 3, c=4{\left| {\overrightarrow c } \right|} = 4
Now we know that [a,b,c]\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] is given by the formula,
[a,b,c]=a.(b×c)\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )
Here, the angle between the vectors a,b×c\overrightarrow a ,\overrightarrow b \times \overrightarrow c is 180{180^ \circ }. Since, b×c\overrightarrow b \times \overrightarrow c is exactly opposite to the vector a,\overrightarrow a ,
On simplifying using the angle mentioned above we get,
a.(b×c)=a.b×ccos180\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }
We know the trigonometric values of cosθ\cos \theta then we get, cos180=1\cos {180^ \circ } = - 1
Substitute the value into the above expression we get,
a.(b×c)=a.b×c\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right| …. (1)
Now we will consider the value ofb×c\left| {\overrightarrow b \times \overrightarrow c } \right|.
b×c=bcsin90\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }
Since, the angle between the vectors b\overrightarrow b and c\overrightarrow c is 90{90^ \circ }the value of θ\theta is replaced by90{90^ \circ } .
Substitute this value at the expression (1) we get,
a.(b×c)=abcsin90\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }
Applying the trigonometric value of sine function we get,
a.(b×c)=abc\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|
Now let us put the values of a=2\left| {\overrightarrow a } \right| = 2,b=3\left| {\overrightarrow b } \right| = 3, c=4\left| {\overrightarrow c } \right| = 4 in the above equation, we get,
a.(b×c)=2×3×4=24\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24
Hence,
a.(b×c)=24\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24
That is the value of [a,b,c]\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]is24 - 24

Therefore, the correct option is (B)24 - 24.

Note: Let us consider the two vectors b\overrightarrow b and c\overrightarrow c .
Then, b×c=bcsinθ\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta
Since, the given system is left-handed, orthogonal the angle between vectors b\overrightarrow b and \overrightarrow c $$$${90^ \circ }.
Again,
[a,b,c]=a.(b×c)\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )
[a,b,c]\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.