Solveeit Logo

Question

Question: If \(\overrightarrow a ,\overrightarrow b \) are the unit vectors inclined to x-axis at the angle \(...

If a,b\overrightarrow a ,\overrightarrow b are the unit vectors inclined to x-axis at the angle 30 and 12030^\circ {\text{ and 120}}^\circ then a+b\left| {\overrightarrow a + \overrightarrow b } \right| equals
A. 2/3\sqrt {2/3}
B. 2\sqrt 2
C. 3\sqrt 3
D. 22

Explanation

Solution

We can write a,b\overrightarrow a ,\overrightarrow b in the form of i^,j^\widehat i,\widehat j and we know that a,b\overrightarrow a ,\overrightarrow b are unit vectors so we can say that
a=1,b=1\left| a \right| = 1,\left| b \right| = 1
So let us assume that a=x1i^+y1j^\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j and b=x2i^+y2j^\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j

Complete step by step solution:
Here we know that a,b\overrightarrow a ,\overrightarrow b are unit vectors so we can say that their magnitudes are equal to one
a=1,b=1\left| a \right| = 1,\left| b \right| = 1
So let us assume that a=x1i^+y1j^\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j and b=x2i^+y2j^\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j are two vectors and we know that a=1,b=1\left| a \right| = 1,\left| b \right| = 1 so we get that x12+y12=1\sqrt {{x_1}^2 + {y_1}^2} = 1 and x22+y22=1\sqrt {{x_2}^2 + {y_2}^2} = 1
Now we are also given that a,b\overrightarrow a ,\overrightarrow b are the unit vectors inclined to x-axis at the angle 30 and 12030^\circ {\text{ and 120}}^\circ
So we get the graph as

Therefore the angle made by the b\overrightarrow b by the negative x-axis is 180120=60180 - 120 = 60^\circ
Now as we assumed that a=x1i^+y1j^\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j so we can write that
x1=acos30,y1=asin30{x_1} = \left| a \right|\cos 30^\circ ,{y_1} = \left| a \right|\sin 30^\circ and we know that a=1,b=1\left| a \right| = 1,\left| b \right| = 1
So x1=32,y1=12{x_1} = \dfrac{{\sqrt 3 }}{2},{y_1} = \dfrac{1}{2}
So we get the a=32i^+12j^\overrightarrow a = \dfrac{{\sqrt 3 }}{2}\widehat i + \dfrac{1}{2}\widehat j
Now as we assumed that b=x2i^+y2j^\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j so we can write that
x2=bcos60,y2=bsin60{x_2} = - \left| b \right|\cos 60^\circ ,{y_2} = \left| b \right|\sin 60^\circ and we know that a=1,b=1\left| a \right| = 1,\left| b \right| = 1
So x2=12,y2=32{x_2} = \dfrac{{ - 1}}{2},{y_2} = \dfrac{{\sqrt 3 }}{2}
So we get the b=12i^+32j^\overrightarrow b = \dfrac{1}{2}\widehat i + \dfrac{{\sqrt 3 }}{2}\widehat j
So we get
a+b=32i^+12j^\overrightarrow a + \overrightarrow b = \dfrac{{\sqrt 3 }}{2}\widehat i + \dfrac{1}{2}\widehat j +12i^+32j^ + \dfrac{1}{2}\widehat i + \dfrac{{\sqrt 3 }}{2}\widehat j
a+b=(3212)i^+(12+32)j^\overrightarrow a + \overrightarrow b = (\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2})\widehat i + (\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2})\widehat j
Now the magnitude of this can be written as
a+b=(312)2+(3+12)2\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)}^2}}
a+b=((31)24)+((3+1)24)\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {\left( {\dfrac{{{{(\sqrt 3 - 1)}^2}}}{4}} \right) + \left( {\dfrac{{{{(\sqrt 3 + 1)}^2}}}{4}} \right)}
a+b=3+1+3+123+234=84=2\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {\dfrac{{3 + 1 + 3 + 1 - 2\sqrt 3 + 2\sqrt 3 }}{4}} = \sqrt {\dfrac{8}{4}} = \sqrt 2

So we got that a+b=2\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 2

Note:
As we know that a=1,b=1\left| a \right| = 1,\left| b \right| = 1 and the angle between them is θ=12030=90\theta = 120 - 30 = 90^\circ
So a+b\overrightarrow a + \overrightarrow b is the resultant of a and b\overrightarrow a {\text{ and }}\overrightarrow b and its magnitude is given as
a+b=(a)2+(b)2+2(a)(b)cosθ\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left( {\left| {\overrightarrow a } \right|} \right)}^2} + {{\left( {\left| {\overrightarrow b } \right|} \right)}^2} + 2\left( {\left| {\overrightarrow a } \right|} \right)\left( {\left| {\overrightarrow b } \right|} \right)\cos \theta }
=12+12+2.1.1.cos90 =2  = \sqrt {{1^2} + {1^2} + 2.1.1.\cos 90} \\\ = \sqrt 2 \\\