Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a,b\overrightarrow{a}, \overrightarrow{b} and c\overrightarrow{c} are unit coplanar vectors, then the scalar triple product [2ab2bc2ca][2\overrightarrow{a}-\overrightarrow{b}2\overrightarrow{b}-\overrightarrow{c}2\overrightarrow{c}-\overrightarrow{a}] is

A

0

B

1

C

3-\sqrt{3}

D

3\sqrt{3}

Answer

0

Explanation

Solution

a,b,c\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} are coplanar vectors, then 2ab,2bcand2ca2\overrightarrow{a}-\overrightarrow{b}, 2\overrightarrow{b}-\overrightarrow{c} and 2\overrightarrow{c}-\overrightarrow{a} are also coplanar vectors
i.e.[2ab2bc2ca]=0i.e. [2\overrightarrow{a}-\overrightarrow{b}\, \, \, \, \, \, 2\overrightarrow{b}-\overrightarrow{c}\, \, \, \, \, 2\overrightarrow{c}-\overrightarrow{a}]=0