Solveeit Logo

Question

Question: If \( \overrightarrow{a} \) is a non-zero vector of magnitude \( a \) and \[\lambda \overrightarrow{...

If a\overrightarrow{a} is a non-zero vector of magnitude aa and λa\lambda \overrightarrow{a} is a unit vector, then find the value of λ.\lambda .

Explanation

Solution

Hint : If we have a unit vector b^\widehat{b} then it’s value is given by the following expression b^=bb\widehat{b}=\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} .
where b\left| \overrightarrow{b} \right| is the magnitude of b\overrightarrow{b} ,
Using the above equation and information given in the question we can find out the value of λ\lambda .

Complete step-by-step answer :
As we know value of a unit vector a^\widehat{a} is given by,
a^=aa......(1)\widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}......(1)
Where a\left| \overrightarrow{a} \right| is the magnitude of a\overrightarrow{a} .
For example, suppose
a=2i^+2j+k^\overrightarrow{a}=2\widehat{i}+2\overset\frown{j}+\widehat{k}
where i,j,k\overset\frown{i},\overset\frown{j},\overset\frown{k} are the unit vectors in the direction x,yandzx,y\,and\,z respectively
so, to find the magnitude of a\overrightarrow{a} i.e. a\left| \overrightarrow{a} \right| we need to add the individual squares of the coefficients of the unit vectors and take the square root of the whole expression so, a\left| \overrightarrow{a} \right| would be equal to 22+22+12\sqrt{{{2}^{2}}+{{2}^{2}}+{{1}^{2}}}
hence, a=22+22+12=4+4+1=9=3\left| \overrightarrow{a} \right|=\sqrt{{{2}^{2}}+{{2}^{2}}+{{1}^{2}}}=\sqrt{4+4+1}=\sqrt{9}=3 and hence,
a^=aa=2i^+2j+k^3\widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}=\dfrac{2\widehat{i}+2\overset\frown{j}+\widehat{k}}{3}
Now, moving back to the given question,
We are given that:
a^=λa......(2)\widehat{a}=\lambda \overrightarrow{a}......(2)
Comparing and equating both the equations (1) and (2) we get,
λa^=aa\lambda \widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}
Now, by dividing both sides by a\overrightarrow{a} , we get
λ=1a\lambda =\dfrac{1}{\left| \overrightarrow{a} \right|}
Hence value of λ\lambda is equal to λ=1a\lambda =\dfrac{1}{\left| \overrightarrow{a} \right|} .

Note : To solve this problem you need to know the basics of vectors and unit vectors.
You should have a good grasp over what is a unit vector and what is it’s magnitude which is understood by its name (i.e. unit) that is 1. Always remember the following equation of unit vectors for future references:
If we are given a vector b\overrightarrow{b} , then suppose b\overset\frown{b} is the unit vector b\overrightarrow{b} and it’s value will be equal to bb\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} , i.e. b^=bb\widehat{b}=\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} where b\left| \overrightarrow{b} \right| is the magnitude of b\overrightarrow{b} .