Solveeit Logo

Question

Question: If \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are two vectors, then \[\left( 2\overrightarrow...

If a\overrightarrow{a} and b\overrightarrow{b} are two vectors, then (2a+3b)×(5a+7b)+(a×b)\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right) is equal to?
(a) 00
(b) 11
(c) a×b\overrightarrow{a}\times \overrightarrow{b}
(d) b×a\overrightarrow{b}\times \overrightarrow{a}

Explanation

Solution

Assume the given expression as E. Take the cross product (2a+3b)×(5a+7b)\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right) and simplify it using the relations a×a=0\overrightarrow{a}\times \overrightarrow{a}=0 and b×b=0\overrightarrow{b}\times \overrightarrow{b}=0. Further, use the relation b×a=a×b\overrightarrow{b}\times \overrightarrow{a}=-\overrightarrow{a}\times \overrightarrow{b} by considering the fact that the rotation of vectors in the two cases are in opposite direction and the vector obtained by the vector product is perpendicular to both a\overrightarrow{a} and b\overrightarrow{b}. Add the term (a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right) present at the end to get the answer.

Complete step-by-step solution:
Here we have been provided with two vectors a\overrightarrow{a} and b\overrightarrow{b}, we are asked to find the value of the expression (2a+3b)×(5a+7b)+(a×b)\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right). Let us assume the expression as E, so we have,
E=(2a+3b)×(5a+7b)+(a×b)\Rightarrow E=\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right)
Now, first considering the cross product (2a+3b)×(5a+7b)\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right) we have,
\Rightarrow E=\left\\{ 10\left( \overrightarrow{a}\times \overrightarrow{a} \right)+14\left( \overrightarrow{a}\times \overrightarrow{b} \right)+15\left( \overrightarrow{b}\times \overrightarrow{a} \right)+21\left( \overrightarrow{b}\times \overrightarrow{b} \right) \right\\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)
We know that (a×b)=absinθ(n^)\left( \overrightarrow{a}\times \overrightarrow{b} \right)=ab\sin \theta \left( {\hat{n}} \right), where a and b are the magnitudes of a\overrightarrow{a} and b\overrightarrow{b} respectively, θ\theta is the angle between the two vectors and (n^)\left( {\hat{n}} \right) is a unit vector perpendicular to the planes of both a\overrightarrow{a} and b\overrightarrow{b}. Since the angle between two equal vectors is 0{{0}^{\circ }} and we have sin0=0\sin {{0}^{\circ }}=0, therefore (a×a)=0\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0 and (b×b)=0\left( \overrightarrow{b}\times \overrightarrow{b} \right)=0.
\Rightarrow E=\left\\{ 14\left( \overrightarrow{a}\times \overrightarrow{b} \right)+15\left( \overrightarrow{b}\times \overrightarrow{a} \right) \right\\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)
In the cross product (a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right) we rotate a\overrightarrow{a} towards b\overrightarrow{b} and in cross product (b×a)\left( \overrightarrow{b}\times \overrightarrow{a} \right) we rotate b\overrightarrow{b} towards a\overrightarrow{a}, so in the two cases the vectors obtained are perpendicular to both a\overrightarrow{a} and b\overrightarrow{b} but they are opposite in direction. If the unit vector along (a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right) is n^\hat{n} then the unit vector along (b×a)\left( \overrightarrow{b}\times \overrightarrow{a} \right) will be n^-\hat{n}. Therefore, we have the relation b×a=a×b\overrightarrow{b}\times \overrightarrow{a}=-\overrightarrow{a}\times \overrightarrow{b}, so we get,

& \Rightarrow E=\left\\{ 14\left( \overrightarrow{a}\times \overrightarrow{b} \right)-15\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\\ & \Rightarrow E=-\left( \overrightarrow{a}\times \overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\\ & \therefore E=0 \\\ \end{aligned}$$ **Hence, option (a) is the correct answer.** **Note:** Note that the cross product results in a vector quantity and that is why it is also known as the vector product, while the dot product results in a scalar quantity and hence it is called the scalar product. In case of dot product we have the relation $$\overrightarrow{a}.\overrightarrow{b}=ab\cos \theta $$ and it is equal to 0 when the two vectors are perpendicular to each other.