Solveeit Logo

Question

Question: If \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are two, unit vectors such that \(\overrightarr...

If a\overrightarrow{a} and b\overrightarrow{b} are two, unit vectors such that a+(a×b)=c\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}, such that c=2\left| \overrightarrow{c} \right|=2, then find the value of [a b c]\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right] is
(a) 0
(b) ±1\pm 1
(c) 3
(d) -3

Explanation

Solution

Using the given equation, we must find the values of (a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right) and ac\overrightarrow{a}\cdot \overrightarrow{c}. Then, with the help of these values, and the expansion of scalar triple product as (a×b)c\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}, we can find the value of this triple product [a b c]\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right].

Complete step-by-step solution:
Here, we are given that a+(a×b)=c\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}.
Let us subtract a\overrightarrow{a} from both sides of the above equation. Hence, we write
a+(a×b)a=ca\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)-\overrightarrow{a}=\overrightarrow{c}-\overrightarrow{a}.
Thus, we can also write the above equation as (a×b)=ca...(i)\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}-\overrightarrow{a}...\left( i \right)
We need to find the value of [a b c]\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]. We know that [a b c]\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right] is the scalar triple product of a\overrightarrow{a}, b\overrightarrow{b} and c\overrightarrow{c}, and this scalar triple product is defined as a(b×c)\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right) or (a×b)c\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}.
Thus, we can write this mathematically, as
[a b c]=(a×b)c\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}
Using the value of (a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right) from equation (i), we can write,
[a b c]=(ca)c\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{c}-\overrightarrow{a} \right)\cdot \overrightarrow{c}
We know that the dot product is distributive. Hence, using the distributive property, we can write
[a b c]=ccac\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\overrightarrow{c}\cdot \overrightarrow{c}-\overrightarrow{a}\cdot \overrightarrow{c}
Thus, we have
[a b c]=c2ac...(ii)\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left| \overrightarrow{c} \right|}^{2}}-\overrightarrow{a}\cdot \overrightarrow{c}...\left( ii \right)
Now, we need to find the value of ac\overrightarrow{a}\cdot \overrightarrow{c}.
We are given that a+(a×b)=c\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}. Hence, we can also write
\overrightarrow{a}\cdot \left\\{ \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\\}=\overrightarrow{a}\cdot \overrightarrow{c}
Again, using the distributive property, we can write
aa+a(a×b)=ac\overrightarrow{a}\cdot \overrightarrow{a}+\overrightarrow{a}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{a}\cdot \overrightarrow{c}
Thus, we have
a2+[a a b]=ac{{\left| \overrightarrow{a} \right|}^{2}}+\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=\overrightarrow{a}\cdot \overrightarrow{c}
We know that if any two vectors in the scalar triple product are the same, then its value becomes 0. Thus, we have
1+0=ac1+0=\overrightarrow{a}\cdot \overrightarrow{c}
Hence, ac=1\overrightarrow{a}\cdot \overrightarrow{c}=1.
Using the above value in equation (ii), we get
[a b c]=(2)21\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left( 2 \right)}^{2}}-1
And so, [a b c]=3\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=3.
Hence, option (c) is the correct answer.

Note: We can see that [a a b]\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right] can be expressed as [a a c]=(a×a)c\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{a} \right)\cdot \overrightarrow{c}, and since (a×a)=0\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0, we can write [a a b]=0\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=0. We must, also, remember that the scalar triple product [a b c]\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right] can be expressed in multiple forms, like [b c a]\left[ \overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a} \right] and [c a b]\left[ \overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right].