Solveeit Logo

Question

Question: If \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are two non-zero perpendicular vectors, then a ...

If a\overrightarrow{a} and b\overrightarrow{b} are two non-zero perpendicular vectors, then a vector y\overrightarrow{y} satisfying equations a.y=c\overrightarrow{a}.\overrightarrow{y}=c (c scalar) and a×y=b\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b} is
(a) a2(ca(a×b)){{\left| \overrightarrow{a} \right|}^{2}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)
(b) a2(ca(a×b)){{\left| \overrightarrow{a} \right|}^{2}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)
(c) 1a2(ca(a×b))\dfrac{1}{{{\left| \overrightarrow{a} \right|}^{2}}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)
(d) 1a2(ca(a×b))\dfrac{1}{{{\left| \overrightarrow{a} \right|}^{2}}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)

Explanation

Solution

Hint: First do cross product by a to both the sides of equation after that apply vector law of three products which are a×b×c=b(a.c)c(a.b)\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\left( a.c \right)-\overrightarrow{c}\left( a.b \right)by using facts that a.b=abcosθ\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta where θ\theta is angle between two vectors and a×b=absinθ\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin \theta where θ\theta is the angle between two vectors. Hence do further calculations to get the desired result.

Complete step-by-step answer:
In the dot product of two vectors c,d\overrightarrow{c},\overrightarrow{d} then we can say that,
c.d=cdcosθ\overrightarrow{c}.\overrightarrow{d}=\left| \overrightarrow{c} \right|\left| \overrightarrow{d} \right|\cos \theta
Here θ\theta is the angle between two vectors and c\left| c \right| and d\left| d \right| are absolute values of vectors c\overrightarrow{c}and d\overrightarrow{d} . Now in the question we all know that a,b\overrightarrow{a},\overrightarrow{b} are perpendicular to each other then the angle between them is 90{{90}^{\circ }}, so in the equation,
a.b=abcos(90o)\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos ({{90}^{o}})
Now we know, cos90=0\cos {{90}^{\circ }}=0, so a.b=0\overrightarrow{a}.\overrightarrow{b}=0.
Now in the cross product of two vectors c,d\overrightarrow{c},\overrightarrow{d} then we can say that,
c×d=cdsinθ\overrightarrow{c}\times \overrightarrow{d}=\left| c \right|\left| d \right|\sin \theta
Here θ\theta is the angle between two vectors, c\left| c \right| and d\left| d \right| are absolute values of vectors c\overrightarrow{c} and d\overrightarrow{d} . Now in the question we all know that a,b\overrightarrow{a},\overrightarrow{b} is perpendicular to each other then the angle between them is 90{{90}^{\circ }}, so we can write
a×b=absin(90o)\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin ({{90}^{o}})
We know, sin90=1\sin {{90}^{\circ }}=1, so a×b=ab\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|.
Now from the question,
a.y=c\overrightarrow{a}.\overrightarrow{y}=c and a×y=b\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b}
For a×y=b\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b} we cross multiply a\overrightarrow{a} on both sides we get,
a×(a×y)=a×b\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{y} \right)=\overrightarrow{a}\times \overrightarrow{b}
Now here we will use formula, a×(b×c)=b(a.c)c(a.b)\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\overrightarrow{b}\left( \vec{a}.\vec{c} \right)-\overrightarrow{c}\left( \vec{a}.\vec{b} \right), so above equation can be written as
(a.y)a(a.a)y=a×b\left( \overrightarrow{a}.\overrightarrow{y} \right)\overrightarrow{a}-\left( \overrightarrow{a}.\overrightarrow{a} \right)\overrightarrow{y}=\overrightarrow{a}\times \overrightarrow{b}
We know a.a=a2\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}} and it is given that a.y=c\overrightarrow{a}.\overrightarrow{y}=c, so above equation can be written as,

& c\overrightarrow{a}-{{\left| \overrightarrow{a} \right|}^{2}}\overrightarrow{y}=\overrightarrow{a}\times \overrightarrow{b} \\\ & \Rightarrow {{\left| \overrightarrow{a} \right|}^{2}}\overrightarrow{y}=c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\\ & \Rightarrow \overrightarrow{y}=\dfrac{1}{{{\left| \overrightarrow{a} \right|}^{2}}}\left\\{ c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\\} \\\ \end{aligned}$$ Hence the correct option is (c) or (d). Note: Students should be careful while applying vector law of 3 products which is $$\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\left( a.c \right)-\overrightarrow{c}\left( a.b \right)$$. If they write the vector product as $$\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{c}\left( a.b \right)-\overrightarrow{b}\left( a.c \right)$$, they will get option (a) or (b) as the answer. Students generally make mistake in solving the term, $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$.