Solveeit Logo

Question

Question: If \[\overrightarrow a \] and \[\overrightarrow b \] are two non collinear unit vectors and \[\left|...

If a\overrightarrow a and b\overrightarrow b are two non collinear unit vectors and a+b=3\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 then (2a5b)(3a+b)=\left( {2\overrightarrow a - 5\overrightarrow b } \right) \cdot \left( {3\overrightarrow a + \overrightarrow b } \right) =

Explanation

Solution

Hint : Here in this question, we have to find the value of the given vector equation i.e., (2a5b)(3a+b)\left( {2\overrightarrow a - 5\overrightarrow b } \right) \cdot \left( {3\overrightarrow a + \overrightarrow b } \right) using a vector condition a+b=3\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 . This can solve by substituting the value of a\overrightarrow a and b\overrightarrow b (given that two vectors are unit vectors then it values are a=1\overrightarrow a = 1 and b=1\overrightarrow b = 1) and find the value of ab\overrightarrow a \cdot \overrightarrow b by simplifying the condition a+b=3\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 and by substituting all these values in a simplified vector equation we get the required solution.

Complete step-by-step answer :
Vector is a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity’s magnitude. Although a vector has magnitude and direction, it does not have position.
Let us consider the condition,
a+b=3\Rightarrow \left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3
Squaring on both sides, we get
(a+b)2=(3)2\Rightarrow {\left( {\left| {\overrightarrow a + \overrightarrow b } \right|} \right)^2} = {\left( {\sqrt 3 } \right)^2}
Apply a algebraic identity (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab, then
a2+b2+2ab=(3)2\Rightarrow {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2 \cdot \overrightarrow a \cdot \overrightarrow b = {\left( {\sqrt 3 } \right)^2}
Given a\overrightarrow a and b\overrightarrow b are unit vectors which have a length 1 unit.
i.e., a=1\left| {\overrightarrow a } \right| = 1 and b=1\left| {\overrightarrow b } \right| = 1, on substituting we have
12+12+2ab=(3)2\Rightarrow {1^2} + {1^2} + 2 \cdot \overrightarrow a \cdot \overrightarrow b = {\left( {\sqrt 3 } \right)^2}
On simplification, we have
1+1+2ab=3\Rightarrow 1 + 1 + 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3
2+2ab=3\Rightarrow 2 + 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3
Subtract 2 on both sides, then
2ab=32\Rightarrow 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3 - 2
2ab=1\Rightarrow 2 \cdot \overrightarrow a \cdot \overrightarrow b = 1
Divide both side by 2, then
ab=12\Rightarrow \overrightarrow a \cdot \overrightarrow b = \dfrac{1}{2}
Now consider,
(2a5b)(3a+b)=\Rightarrow \left( {2\overrightarrow a - 5\overrightarrow b } \right) \cdot \left( {3\overrightarrow a + \overrightarrow b } \right) =
Remove parenthesis by multiplying a binomial
6a2+2ab15ba5b2\Rightarrow 6{\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a \cdot \overrightarrow b - 15\overrightarrow b \cdot \overrightarrow a - 5{\left| {\overrightarrow b } \right|^2}
Where, a=1\left| {\overrightarrow a } \right| = 1, b=1\left| {\overrightarrow b } \right| = 1 and ab=12\overrightarrow a \cdot \overrightarrow b = \dfrac{1}{2}, on substituting we have
6(1)2+2(12)15(12)5(1)2\Rightarrow 6{\left( 1 \right)^2} + 2\left( {\dfrac{1}{2}} \right) - 15\left( {\dfrac{1}{2}} \right) - 5{\left( 1 \right)^2}
On simplification, we have
6+11525\Rightarrow 6 + 1 - \dfrac{{15}}{2} - 5
71525\Rightarrow 7 - \dfrac{{15}}{2} - 5
2152\Rightarrow 2 - \dfrac{{15}}{2}
Take 2 as LCM, then
4152\Rightarrow \dfrac{{4 - 15}}{2}
On simplification, we get
112\Rightarrow - \dfrac{{11}}{2}
Hence, it’s a required solution.
So, the correct answer is “112 \Rightarrow - \dfrac{{11}}{2}”.

Note : Remember, a vector is a quantity that has both magnitude, as well as direction. A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector. When two or more vectors which are parallel to the same line irrespective of their magnitudes and direction are known as Collinear vectors otherwise its non collinear.