Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a\overrightarrow{a} and b \overrightarrow{b} are vectors such that a+b=29| \overrightarrow{a}+\overrightarrow{b} |=\sqrt{29} and a×(2i^+3j^+4k^)=(2i^+3j^+4k^)×b,\overrightarrow{a}\times(2\widehat{i}+3\widehat{j}+4\widehat{k})=(2\widehat{i}+3\widehat{j}+4\widehat{k})\times\overrightarrow{b}, then a possible value of (a+b)(7i^+2j^+3k^is(\overrightarrow{a}+\overrightarrow{b})(-7\widehat{i}+2\widehat{j}+3\widehat{k} is

A

0

B

3

C

4

D

8

Answer

4

Explanation

Solution

Plan If a×b=a×c\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{a}\times\overrightarrow{c}
a×ba×c=0a×(bc)\Rightarrow \overrightarrow{a}\times\overrightarrow{b}-\overrightarrow{a}\times\overrightarrow{c}=0 \Rightarrow \overrightarrow{a}\times(\overrightarrow{b}-\overrightarrow{c})=0
i.e.a(bc)orbc=λai.e. \overrightarrow{a} || (\overrightarrow{b}-\overrightarrow{c})or \overrightarrow{b}-\overrightarrow{c}=\lambda \overrightarrow{a}
Here,a×(2i^+3j^+4k^)=(2i^+3j^+4k^)×bHere, \overrightarrow{a}\times(2\widehat{i}+3\widehat{j}+4\widehat{k})=(2\widehat{i}+3\widehat{j}+4\widehat{k})\times\overrightarrow{b}
a×(2i^+3j^+4k^)(2i^+3j^+4k^)×b=0\Rightarrow \overrightarrow{a} \times(2\widehat{i}+3\widehat{j}+4\widehat{k})-(2\widehat{i}+3\widehat{j}+4\widehat{k})\times\overrightarrow{b}=0
(a+b)×(2i^+3j^+4k^)=0\Rightarrow (\overrightarrow{a}+\overrightarrow{b})\times(2\widehat{i}+3\widehat{j}+4\widehat{k})=0
\Rightarrow \overrightarrow{a}+\overrightarrow{b}=\lambda (2\widehat{i}+3\widehat{j}+4\widehat{k})\hspace25mm ...(i)
Since, a+b=29±λ4+9+16=29| \overrightarrow{a} +\overrightarrow{b} |=\sqrt{29} \Rightarrow \pm \lambda\sqrt{4+9+16}=\sqrt{29}
λ=±1\Rightarrow \lambda=\pm1
\therefore \hspace25mm \overrightarrow{a}+\overrightarrow{b}=\pm(2\widehat{i}+3\widehat{j}+4\widehat{k})
Now, (a+b).(7i^+2j^+3k^)=±(14+6+12)=±4(\overrightarrow{a}+\overrightarrow{b}).(-7\widehat{i}+2\widehat{j}+3\widehat{k})=\pm(-14+6+12)=\pm4