Question
Mathematics Question on Vector Algebra
If a and b are vectors such that ∣a+b∣=29 and a×(2i+3j+4k)=(2i+3j+4k)×b, then a possible value of (a+b)(−7i+2j+3kis
A
0
B
3
C
4
D
8
Answer
4
Explanation
Solution
Plan If a×b=a×c
⇒a×b−a×c=0⇒a×(b−c)=0
i.e.a∣∣(b−c)orb−c=λa
Here,a×(2i+3j+4k)=(2i+3j+4k)×b
⇒a×(2i+3j+4k)−(2i+3j+4k)×b=0
⇒(a+b)×(2i+3j+4k)=0
\Rightarrow \overrightarrow{a}+\overrightarrow{b}=\lambda (2\widehat{i}+3\widehat{j}+4\widehat{k})\hspace25mm ...(i)
Since, ∣a+b∣=29⇒±λ4+9+16=29
⇒λ=±1
\therefore \hspace25mm \overrightarrow{a}+\overrightarrow{b}=\pm(2\widehat{i}+3\widehat{j}+4\widehat{k})
Now, (a+b).(−7i+2j+3k)=±(−14+6+12)=±4