Solveeit Logo

Question

Question: If \(\overrightarrow a = 2\widehat i - \widehat j - 2\widehat k\) and \(\overrightarrow b = 7\wideha...

If a=2i^j^2k^\overrightarrow a = 2\widehat i - \widehat j - 2\widehat k and b=7i^+2j^3k^\overrightarrow b = 7\widehat i + 2\widehat j - 3\widehat k, then express b\overrightarrow b in the form of b=b1+b2\overrightarrow b = \overrightarrow {{b_1}} + \overrightarrow {{b_2}} , where b1\overrightarrow {{b_1}} is parallel to a\overrightarrow {{a}} and b2\overrightarrow{{b_2}} perpendicular to a\overrightarrow a .

Explanation

Solution

In vector addition, you can directly add the two components. But, remember you can perform i^+i^=2i^\widehat i + \widehat i = 2\widehat i but you cannot add i^+j^\widehat i + \widehat j as it is not possible. b1\overrightarrow {{b_1}} parallel to vector a means b1=λa1\overrightarrow {{b_1}} = \lambda \overrightarrow {{a_1}} and b2\overrightarrow {{b_2}} is perpendicular to vector a means b2.a=0\overrightarrow {{b_2}} .\,\overrightarrow a = 0.

Stepwise solution:
Given:
a=2i^j^2k^\overrightarrow a = 2\widehat i - \widehat j - 2\widehat k and b=7i^+2j^3k^\overrightarrow b = 7\widehat i + 2\widehat j - 3\widehat k .
b1\overrightarrow {{b_1}} is parallel to vector a and b2\overrightarrow {{b_2}} is perpendicular to vector a.
Here,
a=2i^j^2k^\overrightarrow a = 2\widehat i - \widehat j - 2\widehat k
b=7i^+2j^3k^\overrightarrow b = 7\widehat i + 2\widehat j - 3\widehat k
To express b=b1+b2\overrightarrow b = \overrightarrow {{b_1}} + \overrightarrow {{b_2}} , we have to proceed according to the given condition b1a{b_1}||\,\overrightarrow a .
Therefore, b1=λa1\overrightarrow {{b_1}} = \lambda \overrightarrow {{a_1}}
Therefore, we can now say
b1=λ(2i^j^2k^)\overrightarrow {{b_1}} = \lambda (2\widehat i - \widehat j - 2\widehat k) eq. (1)
Now, let us assume b2\overrightarrow {{b_2}} as
b2=(xi^+yj^+zk^)\overrightarrow {{b_2}} = (x\widehat i + y\widehat j + z\widehat k)
Now according to given condition b2\overrightarrow {{b_2}} perpendicular to vector a.
Therefore, b2.a=0\overrightarrow {{b_2}} .\overrightarrow a = 0
Therefore, (xi^+yj^+zk^).(2i^j^2k^)=0(x\widehat i + y\widehat j + z\widehat k)\,.\,(2\widehat i - \widehat j - 2\widehat k) = 0
2xy2z=02x - y - 2z = 0 eq. (2)
Now, equating b\overrightarrow b with the value of summation of b1\overrightarrow {{b_1}} and b2\overrightarrow {{b_2}} , we will get result as
b=b1+b2\overrightarrow b = \overrightarrow {{b_1}} + \overrightarrow {{b_2}}
7i^+2j^3k^=λ(2i^j^2k^)+(xi^+yj^+xk^)\Rightarrow 7\widehat i + 2\widehat j - 3\widehat k = \lambda (2\widehat i - \widehat j - 2\widehat k) + (x\widehat i + y\widehat j + x\widehat k)
=(2λ+x)i^(λy)j^(2λz)k^= (2\lambda + x)\widehat i - (\lambda - y)\widehat j - (2\lambda - z)\widehat k
Completing the corresponding components,
7=(2λ+x)7 = (2\lambda + x) eq. (3)
2=(λy)2 = - (\lambda - y) eq. (4)
3=(2λz)- 3 = - (2\lambda - z) eq. (5)
And, from the perpendicular condition, we have
2xy2x=02x - y - 2x = 0 eq. (2)
Taking eq. (3), eq. (4) and eq. (5) and putting the values of x, y and z in eq. (2), we get
x=72λx = 7 - 2\lambda
y=2+λy = 2 + \lambda
x=2λ3x = 2\lambda - 3
Therefore, the equation (2) becomes,
2(72λ)(2+λ)2(2λ3)=02(7 - 2\lambda ) - (2 + \lambda ) - 2(2\lambda - 3) = 0
144λ2λ4λ+6=0\Rightarrow 14 - 4\lambda - 2 - \lambda - 4\lambda + 6 = 0
202λ=0\Rightarrow 20 - 2 - \lambda = 0
9λ=18\Rightarrow \, - 9\lambda = - 18
Therefore, λ=2\lambda = 2
Now, putting the values of λ\lambda in eq. (3) and eq. (4) and eq. (5) we will get the values of x, y and z.
Now,
7(2×2+x)7(2 \times 2 + x)
x=74\Rightarrow \,x = 7 - 4
x=3\therefore \,x = 3
Again from eq. (4)
3z(2λz)- 3z - (2\lambda - z)
z=43\Rightarrow \,z = 4 - 3
Therefore, z=1z = 1
Therefore, the value of x, y and z are 3, 4 and 1.
Therefore, b=b1+b2\overrightarrow b = \overrightarrow {{b_1}} + \overrightarrow {{b_2}} , is
b1=λ(2i^j^2k^)\overrightarrow {{b_1}} = \lambda (2\widehat i - \widehat j - 2\widehat k)
b2=(xi^+yj^+zk^)\overrightarrow {{b_2}} = (x\widehat i + y\widehat j + z\widehat k)
Thus,
b=2(2i^j^2k^)+3i^+4j^+k^\overrightarrow b = 2(2\widehat i - \widehat j - 2\widehat k)\, + \,3\widehat i + 4\widehat j + \widehat k
Hence the form is represented.

Note: In this type of questions, students often get confused regarding the process of approach. Therefore, read the question carefully to get the desired answer. Also, the coordinates of co-linearity and parallel are both the same.