Question
Question: If \[\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k,\overrightarrow b = p\widehat i + \w...
If a=2i+j+3k,b=pi+j+qk andb×a=0 then
- (p,q)=(2,3)
- (p,q)=(−2,−3)
- (p,q)=(1,2)
- (p,q)=(−1,−2)
Explanation
Solution
Use the basic formula for the cross product of 2 vectors \overrightarrow x \times \overrightarrow y = \left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\\
{{x_1}}&{{x_2}}&{{x_3}} \\\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right|
and equate it to 0 to find the value.
Complete step-by-step answer:
Given, a=2i+j+3k,b=pi+j+qk and b×a=0
We know cross product of any 2 vectors is given by
\Rightarrow 3 - q = 0 \\
\Rightarrow q = 3 \\
\Rightarrow p - 2 = 0 \\
\Rightarrow p = 2 \\