Solveeit Logo

Question

Question: If \(\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k\) and \(\overrightarrow B = 3\wideh...

If A=2i^+7j^+3k^\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k and B=3i^+2j^+5k^\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k, then find the projection of a\overrightarrow a and b\overrightarrow b .

Explanation

Solution

The problem has a vector A\overrightarrow A projected on vector B\overrightarrow B . Thus, one vector component of A\overrightarrow A is parallel to the vector B\overrightarrow B . We can easily calculate the projection of A\overrightarrow A and B\overrightarrow B by using one formula
Proj(B)(A)=1B(A.B)or(A.B)B{\text{Pro}}{{\text{j}}_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{1}{{|\overrightarrow B |\,}}\,(\overrightarrow A \,.\,\overrightarrow B )\,\,or\,\,\dfrac{{(\overrightarrow A \,.\,\overrightarrow B )\,}}{{|\overrightarrow B |\,}}

Stepwise solution:

Given:
A=2i^+7j^+3k^\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k
B=3i^+2j^+5k^\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k
If it is given in the question that A\overrightarrow A projects on B\overrightarrow B , so that the vector component of A\overrightarrow A is in the direction of vector component B\overrightarrow B . The orthogonal projection of A onto a straight line parallel to B, which is defined as A=AB^A = A\widehat B where A is scalar, called a scalar projection of A onto B, and B is the unit vector in the direction of B.
Thus, the projection of A\overrightarrow A on B\overrightarrow B can be written as:
Proj(B)(A)=1B(A.B)\Pr o{j_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{1}{{|\overrightarrow B |\,}}\,(\overrightarrow A \,.\,\overrightarrow B )\, eq. (1)
Where, (A.B)(\overrightarrow A \,.\,\overrightarrow B )\,is the dot product of two vectors A\overrightarrow A and B\overrightarrow B and B|\overrightarrow B | is the magnitude of vector B\overrightarrow B .
A=2i^+7j^+3k^\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k and B=3i^+2j^+5k^\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k
So, dot product of A\overrightarrow A and B\overrightarrow B gives:
(A.B)=(2i^+7j^+3k^).(3i^+2j^+5k^)(\overrightarrow A .\overrightarrow B )\, = \,(2\widehat i + 7\widehat j + 3\widehat k).\,(3\widehat i + 2\widehat j + 5\widehat k)
(2×3)+(7×2)+(3×5)\Rightarrow (2 \times 3) + (7 \times 2) + (3 \times 5) eq. (2)
(A.B)=35\Rightarrow (\overrightarrow A .\,\overrightarrow B )\, = \,35
Here, we take one product of the numbers in the same co ordinate and then add them all to obtain (A.B)(\overrightarrow A .\,\overrightarrow B )\,
Also, remember that the dot product of i^\widehat i, j^\widehat j and k^\widehat k with itself is 1.
Now,
B=(i^)2+(j^)2+(k^)2|\overrightarrow B |\, = \,\sqrt {{{(\widehat i)}^2}\, + \,{{(\widehat j\,)}^2} + \,{{(\widehat k)}^2}}
B=(3)2+(2)2+(5)2|\overrightarrow B |\, = \,\sqrt {{{(3)}^2}\, + \,{{(2\,)}^2} + \,{{(5)}^2}}
B=38|\overrightarrow B |\, = \,\sqrt {38}
Now putting the value in eq. (1), we get
Proj(B)(A)=3538=5.67\Pr o{j_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{{35}}{{\sqrt {38} }} = \,5.67

Note:
Students must have an idea of certain vector properties before attempting this question. The scalar products of two vectors a and b, denoted by a.b\overrightarrow a .\,\overrightarrow b is defined as a.b=abcosθ\overrightarrow a .\,\overrightarrow b = |\,\overrightarrow a |\,|\overrightarrow b |\,\cos \,\theta where θ\theta is the angle between vector and vector b, 0θπ0 \leqslant \theta \leqslant \pi . If either vector (a) equal to zero or vector (b) equal to zero, then θ\theta is not defined, and in this case, we define a.b=0\overrightarrow a .\,\overrightarrow b = 0.