Solveeit Logo

Question

Question: If \(\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0,\) then \(\overrightarrow{a}\times...

If a+2b+3c=0,\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0, then a×b+b×c+c×a=ka×b,\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=k\overrightarrow{a}\times \overrightarrow{b}, Where k is equal to ?
A.0
B.1
C.2
D.3

Explanation

Solution

We are required to find the value of k in the above equation given by a×b+b×c+c×a=ka×b,\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=k\overrightarrow{a}\times \overrightarrow{b}, provided the equation a+2b+3c=0,\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0, We are dealing with vectors in this question and use the concept of cross product here. We multiply the first equation a+2b+3c=0\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0 by vectors of a, b and c and get 3 different equations with 3 different relations. We then substitute them in the other equation and find the value of k.

Complete step by step solution:
To solve this question, consider the relation a+2b+3c=0.\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0. We take the cross product of the above equation with vector a.
a×a+2b×a+3c×a=0×a\Rightarrow \overrightarrow{a}\times \overrightarrow{a}+2\overrightarrow{b}\times \overrightarrow{a}+3\overrightarrow{c}\times \overrightarrow{a}=0\times \overrightarrow{a}
We know that the cross product of any vector with itself is zero, that is, a×a=0.\overrightarrow{a}\times \overrightarrow{a}=0. We also know that any vector multiplied with 0 gives us 0. Using this,
0+2b×a+3c×a=0\Rightarrow 0+2\overrightarrow{b}\times \overrightarrow{a}+3\overrightarrow{c}\times \overrightarrow{a}=0
We also know that if the order of the cross-product changes, the sign of it changes too, a×b=b×a.\overrightarrow{a}\times \overrightarrow{b}=-\overrightarrow{b}\times \overrightarrow{a}. Using this for the 2b×a2\overrightarrow{b}\times \overrightarrow{a} term,
02a×b+3c×a=0\Rightarrow 0-2\overrightarrow{a}\times \overrightarrow{b}+3\overrightarrow{c}\times \overrightarrow{a}=0
Rearranging,
2a×b=3c×a(1)\Rightarrow 2\overrightarrow{a}\times \overrightarrow{b}=3\overrightarrow{c}\times \overrightarrow{a}\ldots \ldots \left( 1 \right)
Repeating the same steps again but this time, we take a cross product with vector b.
a×b+2b×b+3c×b=0×b\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+2\overrightarrow{b}\times \overrightarrow{b}+3\overrightarrow{c}\times \overrightarrow{b}=0\times \overrightarrow{b}
Second term and the term on the right-hand side of the equation become 0. The third term on the left-hand side is rearranged to form a cross product b×c.\overrightarrow{b}\times \overrightarrow{c}.
a×b+03b×c=0\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+0-3\overrightarrow{b}\times \overrightarrow{c}=0
Rearranging,
a×b=3b×c(2)\Rightarrow \overrightarrow{a}\times \overrightarrow{b}=3\overrightarrow{b}\times \overrightarrow{c}\ldots \ldots \left( 2 \right)
Now again, we repeat the steps but this time we use the cross product with vector c.
a×c+2b×c+3c×c=0×c\Rightarrow \overrightarrow{a}\times \overrightarrow{c}+2\overrightarrow{b}\times \overrightarrow{c}+3\overrightarrow{c}\times \overrightarrow{c}=0\times \overrightarrow{c}
Third term and the term on the right-hand side of the equation become 0. The first term on the left-hand side is rearranged to form a cross product c×a.\overrightarrow{c}\times \overrightarrow{a}.
c×a+2b×c+0=0\Rightarrow -\overrightarrow{c}\times \overrightarrow{a}+2\overrightarrow{b}\times \overrightarrow{c}+0=0
Rearranging,
c×a=2b×c(3)\Rightarrow \overrightarrow{c}\times \overrightarrow{a}=2\overrightarrow{b}\times \overrightarrow{c}\ldots \ldots \left( 3 \right)
Now consider the equation given in question,
a×b+b×c+c×a=ka×b\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=k\overrightarrow{a}\times \overrightarrow{b}
Substituting for the first and third terms from equations 2 and 3,
3b×c+b×c+2b×c=ka×b\Rightarrow 3\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{c}+2\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}
Adding the terms on the left-hand side,
6b×c=ka×b\Rightarrow 6\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}
Using equation 2 to substitute in the above equation,
2.3b×c=ka×b\Rightarrow 2.3\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}
2a×b=ka×b\Rightarrow 2\overrightarrow{a}\times \overrightarrow{b}=k\overrightarrow{a}\times \overrightarrow{b}
Comparing both sides of the equation, we get k=2.k=2.

So, the correct answer is “Option C”.

Note: It is important to know the basics of vectors, cross-product of vectors and dot product of vectors in order to solve such questions. We need to note that the cross product of two vectors is usually considered in a three-dimensional space since the cross product of two perpendicular vectors yield another vector perpendicular to both the original vectors.