Question
Question: If \|\(\overline{a}\)\| = 3, \|\(\overline{b}\)\| = 4, \|\(\overline{c}\)\| = 5 and \(\overline{a}\)...
If |a| = 3, |b| = 4, |c| = 5 and a^ (b +c),b^(c + a), c^
(a+b) then |a + b + c| is equal to-
A
50
B
25
C
52
D
12
Answer
52
Explanation
Solution
a^ (b+c) ̃a . (b+c) = 0
̃ a . b + a.c = 0 and two similar results
adding, 2(a.b+b.c+c.a) = 0
Now |a +b +c |2 = (a+ b +c ). (a + b +c )
= |a|2 + |b|2 + |c|2 + 2(a.b +b . c + c.a)
= 9 + 16 + 25 + 0 = 50
\ | a+b +c | =52