Solveeit Logo

Question

Question: If \(\overline{a}=\widehat{i}+\widehat{j}+\widehat{k}\) , \(\overline{b}=4\widehat{i}+3\widehat{j}+4...

If a=i^+j^+k^\overline{a}=\widehat{i}+\widehat{j}+\widehat{k} , b=4i^+3j^+4k^\overline{b}=4\widehat{i}+3\widehat{j}+4\widehat{k} , c=i^+αj^+βk^\overline{c}=\widehat{i}+\alpha \widehat{j}+\beta \widehat{k} , linearly dependent vectors and c=3|\overline{c}|=\sqrt{3} then
(a)α=1,β=1\alpha =1,\beta =-1
(b)α=1,β=±1\alpha =1,\beta =\pm 1
(c)α=1,β=±1\alpha =-1,\beta =\pm 1
(d)α=±1,β=1\alpha =\pm 1,\beta =1

Explanation

Solution

Hint: As it is given in the question that ab and c\overline{a}\text{, }\overline{b}\text{ and }\overline{c} are linearly dependent vectors, so we can say that la+mb=cl\overline{a}+m\overline{b}=\overline{c} . Also, it is given that c=3|\overline{c}|=\sqrt{3} , we can say that 1+α2+β2=3\sqrt{1+{{\alpha }^{2}}+{{\beta }^{2}}}=\sqrt{3} .

Complete step-by-step answer:
It is given that ab and c\overline{a}\text{, }\overline{b}\text{ and }\overline{c} are linearly dependent vectors, so this can be mathematically represented as
la+mb=cl\overline{a}+m\overline{b}=\overline{c}
Provided l, m are not zero at the same time. So, if we substitute the values of ab and c\overline{a}\text{, }\overline{b}\text{ and }\overline{c} with the values given in the question, we get
l(i^+j^+k^)+m(4i^+3j^+4k^)=(i^+αj^+βk^)l\left( \widehat{i}+\widehat{j}+\widehat{k} \right)+m\left( 4\widehat{i}+3\widehat{j}+4\widehat{k} \right)=\left( \widehat{i}+\alpha \widehat{j}+\beta \widehat{k} \right)
li^+lj^+lk^+4mi^+3mj^+4mk^=i^+αj^+βk^\Rightarrow l\widehat{i}+l\widehat{j}+l\widehat{k}+4m\widehat{i}+3m\widehat{j}+4m\widehat{k}=\widehat{i}+\alpha \widehat{j}+\beta \widehat{k}
(l+4m)i^+(l+3m)j^+(l+4m)k^=i^+αj^+βk^\Rightarrow \left( l+4m \right)\widehat{i}+\left( l+3m \right)\widehat{j}+\left( l+4m \right)\widehat{k}=\widehat{i}+\alpha \widehat{j}+\beta \widehat{k}
We know, if two vectors are equal, there coefficients of all i^, j^ and k^\widehat{i},\text{ }\widehat{j}\text{ and }\widehat{k} must be equal. So, applying this for our above equation, we get
l+4m=1............(i) l+3m=α...........(ii) l+4m=β..........(iii) \begin{aligned} & l+4m=1............(i) \\\ & l+3m=\alpha ...........(ii) \\\ & l+4m=\beta ..........(iii) \\\ \end{aligned}
So, if we see equation (i) and equation (iii), we can say that the value of β=1\beta =1 .
Also, it is given that c=3|\overline{c}|=\sqrt{3} , we can say that 1+α2+β2=3\sqrt{1+{{\alpha }^{2}}+{{\beta }^{2}}}=\sqrt{3} . And if we substitute the value β=1\beta =1 and solve the equation, we get
1+α2+1=3\sqrt{1+{{\alpha }^{2}}+1}=\sqrt{3}
On, squaring both sides, we get
2+α2=32+{{\alpha }^{2}}=3
α2=1\Rightarrow {{\alpha }^{2}}=1
Now we know that a2=b{{a}^{2}}=b implies a=±ba=\pm \sqrt{b} . So, our equation becomes:
α=±1\alpha =\pm 1
So, we can conclude that the answer to the above question is option (d).

Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation. It is important to know the relations between dependent and independent vectors as well.