Solveeit Logo

Question

Question: If \( \overline a ,\overline b ,\overline c \) are position vectors of the vertices \( A,B,C \) of \...

If a,b,c\overline a ,\overline b ,\overline c are position vectors of the vertices A,B,CA,B,C of ΔABC.\Delta ABC. If r\overline r is the position vector of a point PP such that (bc+ca+ab)r=bca+cab+abc\left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c then the point PP is
A.Centroid of ΔABC\Delta ABC
B.Orthocentre of ΔABC\Delta ABC
C.Circumcentre of ΔABC\Delta ABC
D.Incentre of ΔABC\Delta ABC

Explanation

Solution

Hint : For solving this particular question, we have to construct a triangle then we have to write the sides of the triangle in terms of position vector. After that we have to substitute the values in the given expression (bc+ca+ab)r=bca+cab+abc\left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c .

Complete step-by-step answer :
Let us consider a ΔABC\Delta ABC as shown in the given figure ,

Here vertex ‘A’ of the above ΔABC\Delta ABC is equal to position vector a\overline a ,
vertex ‘B’ of the above ΔABC\Delta ABC is equal to position vector b\overline b , and
vertex ‘C’ of the above ΔABC\Delta ABC is equal to position vector c\overline c .
Now, the side ‘AB’ of the ΔABC\Delta ABC is equal to ab\left| {\overline a - \overline b } \right| ,
the side ‘BC’ of the ΔABC\Delta ABC is equal to bc\left| {\overline b - \overline c } \right| ,
the side ‘CA’ of the ΔABC\Delta ABC is equal to ca\left| {\overline c - \overline a } \right| ,
It is given that r\overline r is the position vector of a point PP such that (bc+ca+ab)r=bca+cab+abc\left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c
Now substitute the corresponding values, we will get ,

(bc+ca+ab)r=bca+cab+abc (BC+CA+AB)r=BCa+CAb+ABc r=BCa+CAb+ABc(AB+BC+CA)  \Rightarrow \left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c \\\ \Rightarrow (BC + CA + AB)\overline r = BC\overline a + CA\overline b + AB\overline c \\\ \Rightarrow \overline r = \dfrac{{BC\overline a + CA\overline b + AB\overline c }}{{(AB + BC + CA)}} \\\

where ‘AB’ , ‘BC’ , ‘CA’ represent the magnitude of the sides and a, b and c\overline a ,{\text{ }}\overline b {\text{ and }}\overline c are the position vectors of ‘A’, ‘B’ and ‘C’ points respectively.
Here if we compare the equation of r\overline r with the vector formula for incenter in a ΔPQR  where  p,  q  and  r\Delta PQR\;{\text{where}}\;\overline p ,\;\overline q \;{\text{and}}\;\overline r are position vectors of vertices P,  Q  and  RP,\;Q\;{\text{and}}\;R respectively is given as
Position vector of incenter =QR.p+RP.q+PQ.rPQ+QR+RP,  where  PQ,  QR  and  RP= \dfrac{{QR.\overline p + RP.\overline q + PQ.\overline r }}{{PQ + QR + RP}},\;{\text{where}}\;PQ,\;QR\;{\text{and}}\;RP are magnitude of sides,
So we can see that the above equation is matching with the formula for incenter of a triangle,
Therefore, we can say that point ‘P’ is the incenter
Then,
We can say that ‘D’ is the correct option.
So, the correct answer is “Option C”.

Note : We must know that for a point say PP to be Incentre we have the following expression ,
r=ABa+BCb+CAc(AB+BC+CA)\overline r = \dfrac{{AB\overline a + BC\overline b + CA\overline c }}{{(AB + BC + CA)}} . Where r\overline r is the position vector of point PP , where ‘AB’ , ‘BC’ , ‘CA’ represent the magnitude of the sides and a, b and c\overline a ,{\text{ }}\overline b {\text{ and }}\overline c are the position vectors of ‘A’, ‘B’ and ‘C’ points respectively and the denominator AB+BC+CAAB + BC + CA is nothing but the perimeter of the given triangle.