Solveeit Logo

Question

Question: If \(\overline a \) and \(\overline b \) are vectors, satisfying \(\left| {\overline a } \right| = \...

If a\overline a and b\overline b are vectors, satisfying a=b=5\left| {\overline a } \right| = \left| {\overline b } \right| = 5 and (a,b)=45\left( {\overline a ,\overline b } \right) = 45^\circ , then the area of the triangle constructed with vectors a2b\overline a - 2\overline b and 3a+2b3\overline a + 2\overline b is
A. 50250\sqrt 2 sq. units
B. 555\sqrt 5 sq. units
C. 454\sqrt 5 sq. units
D. 353\sqrt 5 sq. units

Explanation

Solution

The area of triangle formed by any two vectors is given by 12×\dfrac{1}{2} \times | cross product of two vectors |.
Now, do the cross product of the two given vectors and take the magnitude of the cross product.
After that, divide the above result by 2 to get the answer.

Complete step-by-step answer:
We are given that, a\overline a and b\overline b are vectors, satisfying a=b=5\left| {\overline a } \right| = \left| {\overline b } \right| = 5 and (a,b)=45\left( {\overline a ,\overline b } \right) = 45^\circ .
Now, it is said that, the vectors a2b\overline a - 2\overline b and 3a+2b3\overline a + 2\overline b form a triangle.
The area of triangle formed by vectors is 12×\dfrac{1}{2} \times | cross product of two vectors |
Δ=12(a2b)×(3a+2b)\therefore \Delta = \dfrac{1}{2}\left| {\left( {\overline a - 2\overline b } \right) \times \left( {3\overline a + 2\overline b } \right)} \right|
=12×a×3a+a×2b2b×3a2b×2b= \dfrac{1}{2} \times \left| {\overline a \times 3\overline a + \overline a \times 2\overline b - 2\overline b \times 3\overline a - 2\overline b \times 2\overline b } \right|
Applying the property a×a=0\overline a \times \overline a = 0 ,
Δ=12a×2b2b×3a\therefore \Delta = \dfrac{1}{2}\left| {\overline a \times 2\overline b - 2\overline b \times 3\overline a } \right|
Also, a×b=b×a\overline a \times \overline b = - \overline b \times \overline a
Δ=12a×2b+3a×2b\therefore \Delta = \dfrac{1}{2}\left| {\overline a \times 2\overline b + 3\overline a \times 2\overline b } \right|
Applying a×b=absinθ\overline a \times \overline b = ab\sin \theta
Δ=122absin45+6absin45\therefore \Delta = \dfrac{1}{2}\left| {2ab\sin 45^\circ + 6ab\sin 45^\circ } \right|
=128absin45 =128ab×12  = \dfrac{1}{2}\left| {8ab\sin 45^\circ } \right| \\\ = \dfrac{1}{2}\left| {8ab \times \dfrac{1}{{\sqrt 2 }}} \right| \\\
Now, a=b=5\left| {\overline a } \right| = \left| {\overline b } \right| = 5
Δ=12×8×5×5×12\therefore \Delta = \dfrac{1}{2} \times 8 \times 5 \times 5 \times \dfrac{1}{{\sqrt 2 }}
=1002 =502  = \dfrac{{100}}{{\sqrt 2 }} \\\ = 50\sqrt 2 \\\
Thus, the area of the triangle constructed with vectors a2b\overline a - 2\overline b and 3a+2b3\overline a + 2\overline b is 50250\sqrt 2 sq. units.
So, Option (A) is correct.

Note: We have written some properties of cross product, which will be useful to us while solving such types of questions.
1. a×a=0\overline a \times \overline a = 0
2.a×b=b×a\overline a \times \overline b = - \overline b \times \overline a
3. (pa)×b=a×(pb)=p(a×b)\left( {p\overline a } \right) \times \overline b = \overline a \times \left( {p\overline b } \right) = p\left( {\overline a \times \overline b } \right)
4. a×b=absinθ\left| {\overline a \times \overline b } \right| = \left| {\overline a } \right|\left| {\overline b } \right|\sin \theta
5. a(b×c)=(a×b)c\overline a \cdot \left( {\overline b \times \overline c } \right) = \left( {\overline a \times \overline b } \right) \cdot \overline c
6. a×(b×c)=(ac)b(ab)c\overline a \times \left( {\overline b \times \overline c } \right) = \left( {\overline a \cdot \overline c } \right)\overline b - \left( {\overline a \cdot \overline b } \right)\overline c .