Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

If origin is the centroid of a ΔPQR\Delta PQR with vertices P(2a,2,6),Q(4,3b,10)P(2a,2,6),Q(-4,3b,- 10) and (8,14,2c)(8,14,2c) , then the value of a,ba,b and cc are respectively.

A

2,2,2- 2 , 2 , 2

B

2,2,163-2, 2 , - \frac {16}{3}

C

2,163,2-2, - \frac {16}{3}, 2

D

163,2,2-\frac {16}{3}, -2,2

Answer

2,163,2-2, - \frac {16}{3}, 2

Explanation

Solution

Coordinates of centroid of ΔPQR\Delta PQR
(2a4+83,2+3b+143,610+2c3)\equiv\left(\frac{2a-4+8}{3}, \frac{2 +3b +14}{3}, \frac{6-10 + 2c}{3}\right)
But it is given that origin is the centroid of ΔPQR\Delta PQR
(0,0,0)=(2a+43,3b+163,2c43)\therefore \left(0,0,0\right) = \left(\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3}\right)
On comparing both sides, we get
2a+43=0,3b+163=0\frac{2a+4}{3} = 0, \frac{3b+16}{3} = 0 and 2c43=0\frac{2c-4}{3} = 0
2a=4,3b=16\Rightarrow 2a = -4, 3b= -16 and 2c=42c = 4
a=2,b=163\Rightarrow a = -2, b = - \frac{16}{3} and c=2c = 2
(a,b,c)(2,163,2)\therefore \left( a, b, c\right)\equiv \left(-2, -\frac{16}{3}, 2\right)