Solveeit Logo

Question

Question: If $\operatorname{Lim}_{x \rightarrow \infty} \left(\sqrt{A x^{2}+12 x}-B x\right)=3(A, B>0)$, then ...

If Limx(Ax2+12xBx)=3(A,B>0)\operatorname{Lim}_{x \rightarrow \infty} \left(\sqrt{A x^{2}+12 x}-B x\right)=3(A, B>0), then the value of (A+B), is

A

4

B

6

C

8

D

12

Answer

6

Explanation

Solution

To find the value of A+B, given the limit condition, we proceed as follows:

  1. Rationalize the expression:

    Multiply and divide by the conjugate:

    Limx(Ax2+12xBx)=Limx(AB2)x2+12xAx2+12x+Bx\operatorname{Lim}_{x \rightarrow \infty} \left(\sqrt{A x^{2}+12 x}-B x\right) = \operatorname{Lim}_{x \rightarrow \infty} \frac{(A - B^2) x^2 + 12 x}{\sqrt{A x^{2}+12 x}+B x}
  2. Apply the limit condition:

    For the limit to be finite, AB2=0A - B^2 = 0, implying A=B2A = B^2. This simplifies the limit to:

    Limx12xAx2+12x+Bx\operatorname{Lim}_{x \rightarrow \infty} \frac{12 x}{\sqrt{A x^{2}+12 x}+B x}

    Divide both numerator and denominator by xx:

    Limx12A+12x+B=12A+B\operatorname{Lim}_{x \rightarrow \infty} \frac{12}{\sqrt{A + \frac{12}{x}} + B} = \frac{12}{\sqrt{A} + B}
  3. Use the given limit value:

    Since the limit is equal to 3:

    12A+B=3\frac{12}{\sqrt{A} + B} = 3

    This simplifies to A+B=4\sqrt{A} + B = 4.

  4. Solve for A and B:

    Since A=B2A = B^2, substitute B=AB = \sqrt{A} into A+B=4\sqrt{A} + B = 4:

    B+B=4    B=2B + B = 4 \implies B = 2

    Then, A=B2=22=4A = B^2 = 2^2 = 4.

  5. Calculate A+B:

    A+B=4+2=6A + B = 4 + 2 = 6

Thus, the value of A+B is 6.