Solveeit Logo

Question

Question: If \[\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0\], then \(\theta \) lies in which q...

If Sinθ>0,Secθ<0\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0, then θ\theta lies in which quadrant
A: First
B: Second
C: Third
D: Fourth

Explanation

Solution

We know in second quadrant only Sinθ&Cosecθ\operatorname{Sin} \theta \& \operatorname{Cos} ec\theta are positive and rest all Cosθ,Secθ,Tanθ,Cotθ\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Tan} \theta ,Cot\theta are negative So for second quadrant we can write
Sinθ>0,Cosecθ>0,Secθ<0,Cosθ<0,Tanθ<0,Cotθ<0\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta < 0,Cot\theta < 0 hence we can find the answer

Complete step-by-step answer:
As we know that the angles are classified into four quadrants, that is, 1st,2nd,3rd,4th1^{st},2^{nd},3^{rd},4^{th}. So basically a round circle is of a circle is of 360{360^ \circ } angle so to make a circle we need an angle of 360{360^ \circ } so this 360{360^ \circ } is divided into 44 parts
I{\rm I} The first part is called 1stQuadrant1stQuadrant in which the angle lies between 0to90{0^\circ}to{90^\circ}. If the angle is between 0to90{0^\circ} to {90^\circ} then that angle lies in first quadrant and in first quadrant we know Sinθ,Cosecθ,Secθ,Cosθ,Tanθ,Cotθ\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta ,\operatorname{Sec} \theta ,\operatorname{Cos} \theta ,\operatorname{Tan} \theta ,Cot\theta all are positive so we can write in the first quadrant Sinθ>0,Cosecθ>0,Secθ>0,Cosθ>0,Tanθ>0,Cotθ>0\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta > 0,\operatorname{Cos} \theta > 0,\operatorname{Tan} \theta > 0,Cot\theta > 0
II{\rm I}{\rm I} Now if angle lies between 90to180{90^\circ} to {180^\circ} then that range is termed as second quadrant for example: If θ=120\theta = {120^\circ} then it lies in second quadrant now we know that in second quadrant Sinθ&Cosecθ\operatorname{Sin} \theta \& \operatorname{Cos} ec\theta are positive and rest all Cosθ,Secθ,Tanθ,Cotθ\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Tan} \theta ,Cot\theta are negative so we can say that in second quadrant Sinθ>0,Cosecθ>0,Secθ<0,Cosθ<0,Tanθ<0,Cotθ<0\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta < 0,Cot\theta < 0.
III{\rm I}{\rm I}{\rm I} If angle lies between 180to270{180^\circ} to {270^\circ} then that range is termed as third quadrant. for example: If θ=200\theta = {200^\circ} then it lies in third quadrant now we know that in third quadrant Tanθ&Cotθ\operatorname{Tan} \theta \& Cot\theta are positive and rest all Cosθ,Secθ,Sinθ,Cosecθ\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta are negative so we can say that in third quadrant Sinθ<0,Cosecθ<0,Secθ<0,Cosθ<0,Tanθ>0,Cotθ>0\operatorname{Sin} \theta < 0,\operatorname{Cos} ec\theta < 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta > 0,Cot\theta > 0.
IV{\rm I}V If angle lies between 270to360{270^\circ} to {360^\circ} then that range is termed as fourth quadrant. for example: If θ=300\theta = {300^\circ} then it lies in fourth quadrant now we know that in fourth quadrant Secθ&Cosθ\operatorname{Sec} \theta \& Cos\theta are positive and rest all Cotθ,Tanθ,Sinθ,CosecθCot\theta ,\operatorname{Tan} \theta ,\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta are negative so we can say that in fourth quadrant Sinθ<0,Cosecθ<0,Secθ>0,Cosθ>0,Tanθ<0,Cotθ<0\operatorname{Sin} \theta < 0,\operatorname{Cos} ec\theta < 0,\operatorname{Sec} \theta > 0,\operatorname{Cos} \theta > 0,\operatorname{Tan} \theta < 0,Cot\theta < 0.

So here we are given that if Sinθ>0,Secθ<0\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0 so we can conclude that
(I)({\rm I}) In 1st1^{st} Quadrant: Sinθ>0,Secθ>0\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta > 0
(II)({\rm I}{\rm I}) In 2nd2^{nd} Quadrant: Sinθ>0,Secθ<0\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0
(III)({\rm I}{\rm I}{\rm I}) In 3rd3^{rd} Quadrant: Sinθ<0,Secθ<0\operatorname{Sin} \theta < 0,\operatorname{Sec} \theta < 0
(IV)({\rm I}V) In 4th4^{th} Quadrant: Sinθ<0,Secθ>0\operatorname{Sin} \theta < 0,\operatorname{Sec} \theta > 0

Therefore Sinθ>0,Secθ<0\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0 lies in Second quadrant.

Note: We can solve by using graphical method also for example
Graph of Sinθ\operatorname{Sin} \theta

Graph of Secθ\operatorname{Sec} \theta

so between Π2toΠ\dfrac{\Pi }{2}to\Pi we see Sinθ>0,Secθ<0\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0 and it lies in second quadrant.