Solveeit Logo

Question

Question: if one unit of mass equal to 20 kg 1 unit of length equal to 4 m per unit of time equal to 2 second ...

if one unit of mass equal to 20 kg 1 unit of length equal to 4 m per unit of time equal to 2 second find one unit of force on the system

Answer

20 N

Explanation

Solution

To find one unit of force in the new system, we first need to recall the fundamental definition of force.

1. Definition of Force:

Force (F) is defined by Newton's second law as the product of mass (M) and acceleration (A). Acceleration is length (L) divided by time (T) squared (L/T2L/T^2).
So, the dimensional formula for force is:
F=MA=MLT2F = M \cdot A = M \cdot \frac{L}{T^2}

In the SI system, 1 Newton (N) is defined as the force required to accelerate a mass of 1 kg by 1 m/s².
Therefore, 1 N=1 kgm/s21 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2.

2. Given Units in the New System:

We are given the following relationships between the new system's units and SI units:

  • 1 unit of mass (MnewM_{\text{new}}) = 20 kg
  • 1 unit of length (LnewL_{\text{new}}) = 4 m
  • 1 unit of time (TnewT_{\text{new}}) = 2 s

3. Calculate One Unit of Force in the New System:

Let 1 unit of force in the new system be FnewF_{\text{new}}. Using the dimensional formula for force, we can express 1 unit of force in terms of the given new units:

1 unit of force=(1 unit of mass)×(1 unit of length)(1 unit of time)21 \text{ unit of force} = (1 \text{ unit of mass}) \times \frac{(1 \text{ unit of length})}{(1 \text{ unit of time})^2}

Now, substitute the equivalent SI values for each new unit:

1 unit of force=(20 kg)×(4 m)(2 s)21 \text{ unit of force} = (20 \text{ kg}) \times \frac{(4 \text{ m})}{(2 \text{ s})^2}

1 unit of force=(20 kg)×(4 m)(4 s2)1 \text{ unit of force} = (20 \text{ kg}) \times \frac{(4 \text{ m})}{(4 \text{ s}^2)}

1 unit of force=(20×44) kgm/s21 \text{ unit of force} = (20 \times \frac{4}{4}) \text{ kg} \cdot \text{m/s}^2

1 unit of force=20 kgm/s21 \text{ unit of force} = 20 \text{ kg} \cdot \text{m/s}^2

Since 1 kgm/s2=1 Newton (N)1 \text{ kg} \cdot \text{m/s}^2 = 1 \text{ Newton (N)}, we have:

1 unit of force=20 N1 \text{ unit of force} = 20 \text{ N}

Thus, one unit of force in the given system is equal to 20 Newtons.

Explanation of the solution:

Force is dimensionally MLT2M L T^{-2}. Substitute the given values of 1 unit of mass (20 kg), 1 unit of length (4 m), and 1 unit of time (2 s) into this dimensional formula.
1 unit of force=(20 kg)×(4 m)×(2 s)2=20×4×14 kgm/s2=20 N1 \text{ unit of force} = (20 \text{ kg}) \times (4 \text{ m}) \times (2 \text{ s})^{-2} = 20 \times 4 \times \frac{1}{4} \text{ kg} \cdot \text{m/s}^2 = 20 \text{ N}.