Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If one side of a triangle is double the other and the angles opposite to these sides differ by 6060^\circ, then the triangle is

A

right angled

B

obtuse angled

C

acute angled

D

isosceles

Answer

right angled

Explanation

Solution

Given, AB=60A-B=60^{\circ}

By sine rule ,
2asinA=asinB\frac{2 a}{\sin A}=\frac{a}{\sin B}
sinA2sinB=0\Rightarrow \,\,\,\,\,\, \sin A-2 \sin B=0
sin(60+B)2sinB=0\Rightarrow \,\,\,\,\,\,\, \sin \left(60^{\circ}+B\right)-2 \sin B=0
32cosB+12sinB2sinB=0\Rightarrow \,\,\,\,\,\,\, \frac{\sqrt{3}}{2} \cos B+\frac{1}{2} \sin B-2 \sin B=0
32cosB32sinB=0\Rightarrow \,\,\,\,\,\,\,\frac{\sqrt{3}}{2} \cos B-\frac{3}{2} \sin B=0
3(12cosB32sinB)=0\Rightarrow \,\,\,\,\,\,\,\sqrt{3}\left(\frac{1}{2} \cos B-\frac{\sqrt{3}}{2} \sin B\right)=0
3[cos(60+B)]=0\Rightarrow \,\,\,\,\,\,\, \sqrt{3}\left[\cos \left(60^{\circ}+B\right)\right]=0
60+B=90\Rightarrow \,\,\,\,\,\,\, 60^{\circ}+B=90^{\circ}
B=30\Rightarrow \,\,\,\,\,\,\,B=30^{\circ}
A=90\Rightarrow \,\,\,\,\,\,\,A=90^{\circ}