Solveeit Logo

Question

Question: If one root of the quadratic equation \[p{x^2} + qx + r = 0\] (\[p \ne 0\]) is a surd \[\dfrac{{\sqr...

If one root of the quadratic equation px2+qx+r=0p{x^2} + qx + r = 0 (p0p \ne 0) is a surd aa+ab\dfrac{{\sqrt a }}{{\sqrt a + \sqrt {a - b} }} , where pp, qq,rr,aa, bbare all rational then the other root is :
A) ba+ab\dfrac{{\sqrt b }}{{\sqrt a + \sqrt {a - b} }}
B) a+a(ab)ba + \dfrac{{\sqrt {a\left( {a - b} \right)} }}{b}
C) a+a(ab)b\dfrac{{a + \sqrt {a\left( {a - b} \right)} }}{b}
D) aabb\dfrac{{\sqrt a - \sqrt {a - b} }}{{\sqrt b }}

Explanation

Solution

Here, we will use the formula for finding the roots of any quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 which is x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}, where aa is the coefficient of x2{x^2}, bb is the coefficient of xx and cc is the constant term.

Complete step-by-step answer:
Step 1: It is given that one root of the quadratic equation px2+qx+r=0p{x^2} + qx + r = 0, p0p \ne 0 is aa+ab\dfrac{{\sqrt a }}{{\sqrt a + \sqrt {a - b} }} and we have to find the second one.
Let the roots are α\alpha and β\beta .
α=aa+ab\Rightarrow \alpha = \dfrac{{\sqrt a }}{{\sqrt a + \sqrt {a - b} }} ….. (1)
Step 2: In the above expression (1), by doing multiplication and division with aabaab\dfrac{{\sqrt a - \sqrt a - b}}{{\sqrt a - \sqrt {a - b} }} , we get:
α=aa+ab×aabaab\Rightarrow \alpha = \dfrac{{\sqrt a }}{{\sqrt a + \sqrt {a - b} }} \times \dfrac{{\sqrt a - \sqrt a - b}}{{\sqrt a - \sqrt {a - b} }}
By doing multiplication of the numerators and denominators, we get:
α=(a)2a(ab)(a)2(ab)2\Rightarrow \alpha = \dfrac{{{{\left( {\sqrt a } \right)}^2} - \sqrt a \left( {\sqrt a - b} \right)}}{{{{\left( {\sqrt a } \right)}^2} - {{\left( {\sqrt {a - b} } \right)}^2}}}
Now, as we know that (a)2=a{\left( {\sqrt a } \right)^2} = a , and a(ab)=a2ab\sqrt a \left( {\sqrt a - b} \right) = \sqrt {{a^2} - ab} , by substituting these values in the above expression α=(a)2a(ab)(a)2(ab)2\alpha = \dfrac{{{{\left( {\sqrt a } \right)}^2} - \sqrt a \left( {\sqrt a - b} \right)}}{{{{\left( {\sqrt a } \right)}^2} - {{\left( {\sqrt {a - b} } \right)}^2}}} , we get:
α=aa2aba(ab)\Rightarrow \alpha = \dfrac{{a - \sqrt {{a^2} - ab} }}{{a - \left( {a - b} \right)}}
By simplifying the terms in the numerator and denominator, we get:
α=aa(ab)b\Rightarrow \alpha = \dfrac{{a - \sqrt {a\left( {a - b} \right)} }}{b}
Step 3: Now, if one root of the equation is α=aa(ab)b\alpha = \dfrac{{a - \sqrt {a\left( {a - b} \right)} }}{b} , then the second root will be as below:
β=a+a(ab)b\Rightarrow \beta = \dfrac{{a + \sqrt {a\left( {a - b} \right)} }}{b} (\because the roots of any quadratic equation are of the form b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} and the only term in the square root will have the sign reversed)

Option C is the correct answer.

Note: Students should remember that roots for any quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 , will be equal to b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} as proved below:
For the equation ax2+bx+c=0a{x^2} + bx + c = 0 , by bringing cc into the RHS side, we get:
ax2+bx=c\Rightarrow a{x^2} + bx = - c ………… (1)
By dividing the above equation (1) with aa, we get:
x2+bxa=ca\Rightarrow {x^2} + \dfrac{{bx}}{a} = \dfrac{{ - c}}{a}
Now, by adding (b2a)2{\left( {\dfrac{b}{{2a}}} \right)^2} on both the sides of the equation x2+bxa=ca{x^2} + \dfrac{{bx}}{a} = \dfrac{{ - c}}{a} , we get:
x2+bxa+(b2a)2=ca+(b2a)2\Rightarrow {x^2} + \dfrac{{bx}}{a} + {\left( {\dfrac{b}{{2a}}} \right)^2} = \dfrac{{ - c}}{a} + {\left( {\dfrac{b}{{2a}}} \right)^2}
By using the formula (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab in the above equation, we get:
(x+b2a)2=ca+b24a2\Rightarrow {\left( {x + \dfrac{b}{{2a}}} \right)^2} = \dfrac{{ - c}}{a} + \dfrac{{{b^2}}}{{4{a^2}}}
By taking root on both of the sides of the equation (x+b2a)2=ca+b24a2{\left( {x + \dfrac{b}{{2a}}} \right)^2} = \dfrac{{ - c}}{a} + \dfrac{{{b^2}}}{{4{a^2}}} , we get:
x+b2a=±ca+b24a2\Rightarrow x + \dfrac{b}{{2a}} = \pm \sqrt {\dfrac{{ - c}}{a} + \dfrac{{{b^2}}}{{4{a^2}}}} …………….. (2)
Now by solving the above equation (2) for xx, we have:
x=b2a±ca+b24a2\Rightarrow x = - \dfrac{b}{{2a}} \pm \sqrt {\dfrac{{ - c}}{a} + \dfrac{{{b^2}}}{{4{a^2}}}}
By multiplying 4a4a with the term ca\dfrac{{ - c}}{a} , for making the denominator the same inside the square root, we get:
x=b2a±4ac4a2+b24a2\Rightarrow x = - \dfrac{b}{{2a}} \pm \sqrt {\dfrac{{ - 4ac}}{{4{a^2}}} + \dfrac{{{b^2}}}{{4{a^2}}}}
By taking LCM inside the square root, we get:
x=b2a±b24ac4a2\Rightarrow x = - \dfrac{b}{{2a}} \pm \sqrt {\dfrac{{{b^2} - 4ac}}{{4{a^2}}}}
We can write the above equation as below:
x=b2a±b24ac4a2\Rightarrow x = - \dfrac{b}{{2a}} \pm \dfrac{{\sqrt {{b^2} - 4ac} }}{{\sqrt {4{a^2}} }}
By substituting the values of 4a2=2a\sqrt {4{a^2}} = 2a in the above equation x=b2a±b24ac4a2x = - \dfrac{b}{{2a}} \pm \dfrac{{\sqrt {{b^2} - 4ac} }}{{\sqrt {4{a^2}} }} , we get:
x=b2a±b24ac2a\Rightarrow x = - \dfrac{b}{{2a}} \pm \dfrac{{\sqrt {{b^2} - 4ac} }}{{2a}}
By taking LCM in the RHS side in the above equation x=b2a±b24ac2ax = - \dfrac{b}{{2a}} \pm \dfrac{{\sqrt {{b^2} - 4ac} }}{{2a}}, we get:
x=b±b24ac2a\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Hence, the roots of a quadratic equation are given by, x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}.
Also, you should remember that if,
b24ac<0{b^2} - 4ac < 0, There are no real roots.
b24ac=0{b^2} - 4ac = 0, There is one real root.
b24ac>0{b^2} - 4ac > 0, There are two real roots.