Solveeit Logo

Question

Question: If one root of the equations ax<sup>2</sup> + bx + c = 0 and bx<sup>2</sup> + cx + a = 0 (a, b, c Ī...

If one root of the equations ax2 + bx + c = 0 and

bx2 + cx + a = 0 (a, b, c Ī R) is common, then the value of

(a3+b3+c3abc)3\left( \frac{a^{3} + b^{3} + c^{3}}{abc} \right)^{3}is:

A

1

B

3

C

9

D

27

Answer

27

Explanation

Solution

Applying condition for common root, we get

a3 + b3 + c3 = 3abc Ž (a3+b3+c3abc)3\left( \frac{a^{3} + b^{3} + c^{3}}{abc} \right)^{3}= 27