Question
Question: If one root of the equation \(x^{2} + px + q = 0\) is the square of the other, then...
If one root of the equation x2+px+q=0 is the square of the other, then
A
p3+q2−q(3p+1)=0
B
p3+q2+q(1+3p)=0
C
p3+q2+q(3p−1)=0
D
p3+q2+q(1−3p)=0
Answer
p3+q2+q(1−3p)=0
Explanation
Solution
Let α and α2 be the roots then α+α2=−p, α.α2=q
Now (α+α2)3=α3+α6+3α3(α+α2) ⇒ −p3=q+q2−3pq ⇒ p3+q2+q(1−3p)=0