Solveeit Logo

Question

Question: If one root of the equation \(x^{2} + px + q = 0\) is the square of the other, then...

If one root of the equation x2+px+q=0x^{2} + px + q = 0 is the square of the other, then

A

p3+q2q(3p+1)=0p^{3} + q^{2} - q(3p + 1) = 0

B

p3+q2+q(1+3p)=0p^{3} + q^{2} + q(1 + 3p) = 0

C

p3+q2+q(3p1)=0p^{3} + q^{2} + q(3p - 1) = 0

D

p3+q2+q(13p)=0p^{3} + q^{2} + q(1 - 3p) = 0

Answer

p3+q2+q(13p)=0p^{3} + q^{2} + q(1 - 3p) = 0

Explanation

Solution

Let α and α2\alpha^{2} be the roots then α+α2=p\alpha + \alpha^{2} = - p, α.α2=q\alpha.\alpha^{2} = q

Now (α+α2)3=α3+α6+3α3(α+α2)(\alpha + \alpha^{2})^{3} = \alpha^{3} + \alpha^{6} + 3\alpha^{3}(\alpha + \alpha^{2})p3=q+q23pq- p^{3} = q + q^{2} - 3pqp3+q2+q(13p)=0p^{3} + q^{2} + q(1 - 3p) = 0