Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If one root of the equation lx2+mx+n=0l{{x}^{2}}+mx+n=0 is 92\frac{9}{2} (l,m(l,m and n are positive integers) and m4n=lm,\frac{m}{4n}=\frac{l}{m}, then 1x+1y\frac{1}{x}+\frac{1}{y} is equal to

A

80

B

85

C

90

D

95

Answer

85

Explanation

Solution

Given, lx2+mx+n=0l{{x}^{2}}+mx+n=0 ...(i) Now, D=m24lnD={{m}^{2}}-4ln
=0=0 ( \because m2=4ln{{m}^{2}}=4ln given)
It means roots of given equation are equal.
\therefore (x92)2=0{{\left( x-\frac{9}{2} \right)}^{2}}=0
\Rightarrow 4x2+8136x=04{{x}^{2}}+81-36x=0 ...(ii)
On comparing Eqs. (i) and (ii), we get
l=4, m=36,n=81l=4,\text{ }m=-36,n=81
\therefore l+n=4+81=85l+n=4+81=85