Solveeit Logo

Question

Question: If one root of eq. $x^2-x+3a=0$ double the root of eq. $x^2-x+a=0$...

If one root of eq. x2x+3a=0x^2-x+3a=0 double the root of eq. x2x+a=0x^2-x+a=0

Answer

a=0 or a=-2

Explanation

Solution

Let the roots of x2x+a=0x^2-x+a=0 be α,β\alpha, \beta and the roots of x2x+3a=0x^2-x+3a=0 be γ,δ\gamma, \delta. From Vieta's formulas, α+β=1,αβ=a\alpha+\beta=1, \alpha\beta=a and γ+δ=1,γδ=3a\gamma+\delta=1, \gamma\delta=3a. Assuming γ=2α\gamma=2\alpha, we get β=1α\beta=1-\alpha and δ=12α\delta=1-2\alpha. Substituting into the product of roots equations: α(1α)=a\alpha(1-\alpha)=a and (2α)(12α)=3a(2\alpha)(1-2\alpha)=3a. Eliminating aa yields α2+α=0\alpha^2+\alpha=0, so α=0\alpha=0 or α=1\alpha=-1. For α=0\alpha=0, a=0a=0. For α=1\alpha=-1, a=2a=-2. Both values are valid.