Solveeit Logo

Question

Question: If one root of \(( - \infty, - \sqrt{2}) \cup (\sqrt{2},\infty)\) is reciprocal of the other, then \...

If one root of (,2)(2,)( - \infty, - \sqrt{2}) \cup (\sqrt{2},\infty) is reciprocal of the other, then (,1)(1,)( - \infty, - 1) \cup (1,\infty) =

A

0

B

5

C

1/6

D

6

Answer

5

Explanation

Solution

Let first root l4x2+nl(m22nl)xn4=0l^{4}x^{2} + nl(m^{2} - 2nl)x - n^{4} = 0 and second root =l4x2nl(m2+2nl)x+n4=0l^{4}x^{2} - nl(m^{2} + 2nl)x + n^{4} = 0

Then p2=4q+1p^{2} = 4q + 1.