Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If one root is square of the other root of the equation x2+px+q=0,x^2+px+q=0, then the relation between p and q is

A

p3q(3p1)+q2=0p^3-q(3p-1)+q^2=0

B

p3q(3p+1)+q2=0p^3-q(3p+1)+q^2=0

C

p3+q(3p1)+q2=0p^3+q(3p-1)+q^2=0

D

p3+q(3p+1)+q2=0p^3+q(3p+1)+q^2=0

Answer

p3q(3p1)+q2=0p^3-q(3p-1)+q^2=0

Explanation

Solution

Let the roots of x2+px+q=0beαandα2. x^2+px+q=0\, be\, \alpha\, and\, \alpha^2.
α+α2=pandα3=q\Rightarrow\, \, \, \, \, \alpha+\alpha^2=-p\, \, \, and\, \, \alpha^3=q
α(α+1)=p\Rightarrow\, \, \, \, \, \alpha(\alpha+1)=-p
\Rightarrow\, \alpha^3\biggl\\{\alpha^3+1+3\alpha(\alpha+1)\biggl\\}=-p^3 [cubing both sides]
q(q+13p)=p3\Rightarrow\, \, \, \, \, \, q(q+1-3p)=-p^3
p3(3p1)q+q2=0\Rightarrow\, \, \, \, \, p^3-(3p-1)q+q^2=0