Solveeit Logo

Question

Mathematics Question on Polynomials

If one of the zeroes of the quadratic polynomial (α1)x2+αx+1(\alpha - 1)x^2 + \alpha x + 1 is 3-3, then the value of α\alpha is:

A

23-\frac{2}{3}

B

23\frac{2}{3}

C

43\frac{4}{3}

D

34\frac{3}{4}

Answer

43\frac{4}{3}

Explanation

Solution

Let the quadratic polynomial be f(x)=(α1)x2+αx+1f(x) = (\alpha - 1)x^2 + \alpha x + 1.

Given that one of the zeroes is 3-3, we can substitute x=3x = -3 into the equation:

f(3)=(α1)(3)2+α(3)+1=0f(-3) = (\alpha - 1)(-3)^2 + \alpha(-3) + 1 = 0

Simplifying:

(α1)(9)3α+1=0(\alpha - 1)(9) - 3\alpha + 1 = 0

9α93α+1=09\alpha - 9 - 3\alpha + 1 = 0

6α8=06\alpha - 8 = 0

Solve for α\alpha:

6α=8    α=86=436\alpha = 8 \implies \alpha = \frac{8}{6} = \frac{4}{3}

Thus, α=43\alpha = \frac{4}{3}.