Solveeit Logo

Question

Mathematics Question on Straight lines

If one of the slopes of the pair of lines ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0 is nn times the other then

A

4(n+1)2ab=nab4(n + 1)^2 ab = nab

B

4h2=(n+1)2ab4h^2 = (n + 1 )^2 ab

C

4nh2=(n+1)2ab4nh^2 = (n + 1)^2 ab

D

4ab=(n+1)2h4ab = (n + 1)^2h

Answer

4h2=(n+1)2ab4h^2 = (n + 1 )^2 ab

Explanation

Solution

Let m be the slope of the lines ax2+2hxy+by2=0ax^2 +2 hxy + by^2 = 0, then according to question , other slope will be nm.
m+nm=2hb\therefore m+ nm=\frac{-2h}{b}
m(1+n)=2hb...(i)\Rightarrow m \left(1+n\right)=\frac{-2h}{b}\quad\quad... \left(i\right)
andm?nm=ab\quad m ? nm= \frac{a}{b}
nm2=ab\Rightarrow nm^{2} = \frac{a}{b}
m=±abn...(ii)\Rightarrow m = \pm\sqrt{\frac{a}{bn}} \quad\quad... \left(ii\right)
\therefore From E (i), we get
±abn(1+n)=2hb\pm\sqrt{\frac{a}{bn}}\left(1+n\right) = \frac{-2h}{b}
On squaring both sides, we get
abn(1+n)2=4h2b2\frac{a}{bn}\left(1+n\right)^{2} = \frac{4h^{2}}{b^{2}}
4h2n=ab(1+n)2\Rightarrow 4h^{2}n = ab\left(1+n\right)^{2}