Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If one of the roots of the quadratic equation ax2bx+a=0ax^2 - bx + a = 0 is 66, then value of ba\frac{ b}{ a} is equal to

A

16\frac{ 1}{ 6}

B

116\frac{ 11}{6 }

C

376\frac{37 }{ 6}

D

611\frac{ 6}{ 11}

Answer

376\frac{37 }{ 6}

Explanation

Solution

Given equation is
ax2bx+a=0.....(i)a x^{2}-b x+a=0 \,.....(i)
and one root is 6 .
Let α\alpha and β\beta are the roots of the equation and α=6\alpha=6. From the equation
α+β=ba\alpha+\beta=\frac{b}{a}
6+β=ba.....(ii)\Rightarrow 6+\beta=\frac{b}{a} \, .....(ii)
and αβ=aa=1β=1α=16\alpha \beta=\frac{a}{a}=1 \Rightarrow \beta=\frac{1}{\alpha}=\frac{1}{6}
By putting β=16\beta=\frac{1}{6} in E (ii), we get
6+16=baba=3766+\frac{1}{6}=\frac{b}{a} \Rightarrow \frac{b}{a}=\frac{37}{6}