Solveeit Logo

Question

Question: If one of the lines represented by the equation \(ax^{2} + 2hxy + by^{2} = 0\) be \(y = mx,\) then...

If one of the lines represented by the equation ax2+2hxy+by2=0ax^{2} + 2hxy + by^{2} = 0 be y=mx,y = mx, then

A

bm2+2hm+a=0bm^{2} + 2hm + a = 0

B

bm2+2hma=0bm^{2} + 2hm - a = 0

C

am2+2hm+b=0am^{2} + 2hm + b = 0

D

bm22hm+a=0bm^{2} - 2hm + a = 0

Answer

bm2+2hm+a=0bm^{2} + 2hm + a = 0

Explanation

Solution

Substituting the value of y in the equation

ax2+2hxy+by2=0ax^{2} + 2hxy + by^{2} = 0

ax2+2hx(mx)+b(mx)2=0ax^{2} + 2hx(mx) + b(mx)^{2} = 0 \Rightarrow a+2hm+bm2=0a + 2hm + bm^{2} = 0