Solveeit Logo

Question

Mathematics Question on Circle

If one of the diameters of the circle
x2+y222x62y+14=0x^2+y^2−2\sqrt2x−6\sqrt2y+14=0
is a chord of the circle
(x22)2+(y22)2=r2(x−2\sqrt2)^2+(y−2\sqrt2)^2=r^2
, then the value of r2 is equal to _______.

Answer

The correct answer is 10
For
x2+y222x62y+14=0x^2+y^2−2\sqrt2x−6\sqrt2y+14=0
Radius
=(2)2+(32)214=6=\sqrt{(\sqrt2)^2+(3\sqrt2)^2−14}=\sqrt6
⇒ Diameter =26= 2\sqrt6
If this diameter is chord to
(x22)2+(y22)2=r2(x−2\sqrt2)^2+(y−2\sqrt2)^2=r^2
then

Fig.

r2=6+((2)2+(2)2)2⇒r^2=6+\left(\sqrt{(\sqrt2)^2+(\sqrt2)^2}\right)^2
⇒ r2 = 6 + 4 = 10
⇒ r2 = 10