Solveeit Logo

Question

Question: If one mole of a monatomic gas \(\left( {\gamma = \dfrac{5}{3}} \right)\) is mixed with one mole of ...

If one mole of a monatomic gas (γ=53)\left( {\gamma = \dfrac{5}{3}} \right) is mixed with one mole of a diatomic gas (γ=75)\left( {\gamma = \dfrac{7}{5}} \right), the value for the mixture is
A.1.4
B.1.5
C.1.53
D.3.07

Explanation

Solution

For an ideal monatomic gas, Cv=32RT{C_v} = \dfrac{3}{2}RT, and Cp=52RT{C_p} = \dfrac{5}{2}RT and for an ideal diatomic gas, Cv=52RT{C_v} = \dfrac{5}{2}RT, and Cp=72RT{C_p} = \dfrac{7}{2}RT. We can deduce the values of Cp{C_p} and Cv{C_v} for both the gases by using the equation Cp=γnRγ1{C_p} = \dfrac{{\gamma nR}}{{\gamma - 1}} and Cv=nRγ1{C_v} = \dfrac{{nR}}{{\gamma - 1}}. Once we have found the Cp{C_p} and Cv{C_v} values for both the gases, we will find γ\gamma for the mixture from the equation CpCv\dfrac{{{C_p}}}{{{C_v}}}

Complete step by step answer:
For a monatomic gas,
n1=1{n_1} = 1
For diatomic gas,
n2=1{n_2} = 1
For one mole of monoatomic gas,
Cv1=32R{C_{v1}} = \dfrac{3}{2}R, and Cp1=52R{C_{p1}} = \dfrac{5}{2}R s
For one mole of diatomic gas,
Cv2=52RT{C_{v2}} = \dfrac{5}{2}RT, and Cp2=52R{C_{p2}} = \dfrac{5}{2}R
Cp{C_p} denotes the amount of heat that is required to raise the temperature of 1 mole by 1C{1^\circ }C while maintaining constant pressure and Cv{C_v} denotes the amount of heat that is required to raise the temperature of 1 mole by 1C{1^\circ }C while maintaining constant volume.
Thus, for mixture of 1 mole each,
Cv{C_v} for the mixture =n1Cv1n2Cv2n1+n2 = \dfrac{{{n_1}{C_{v1}}{n_2}{C_{v2}}}}{{{n_1} + {n_2}}}
Cv{C_v} for the mixture 3=32RT+52RT2=84RT=2RT3 = \dfrac{{\dfrac{3}{2}RT + \dfrac{5}{2}RT}}{2} = \dfrac{8}{4}RT = 2RT
And, Cp=52RT+72RT2=124RT=3RT{C_p} = \dfrac{{\dfrac{5}{2}RT + \dfrac{7}{2}RT}}{2} = \dfrac{{12}}{4}RT = 3RT
So, the specific heat ratio for the mixture will be:
γ=CpCv=3RT2RT=32=1.5\Rightarrow \gamma = \dfrac{{{C_p}}}{{{C_v}}} = \dfrac{{3RT}}{{2RT}} = \dfrac{3}{2} = 1.5
γ=1.5\gamma = 1.5

So, the correct answer is option (B).

Note: The alternate method to solve this problem is,
For a monatomic gas,
n1=1;γ1=53{n_1} = 1;\gamma 1 = \dfrac{5}{3}
For diatomic gas,
n2=1;γ2=75{n_2} = 1;\gamma 2 = \dfrac{7}{5}
For mixture of gases,
From, nRγ1=\dfrac{{nR}}{{\gamma - 1}} = constant
n1+n2γm1=n1γ11+n1γ21\dfrac{{{n_1} + {n_2}}}{{{\gamma _m} - 1}} = \dfrac{{{n_1}}}{{{\gamma _1} - 1}} + \dfrac{{{n_1}}}{{{\gamma _2} - 1}}
\Rightarrow 1+1γm1=1531+1751\dfrac{{1 + 1}}{{{\gamma _m} - 1}} = \dfrac{1}{{\dfrac{5}{3} - 1}} + \dfrac{1}{{\dfrac{7}{5} - 1}}
\Rightarrow 2γm1=32+52\dfrac{2}{{{\gamma _m}}} - 1 = \dfrac{3}{2} + \dfrac{5}{2}
\Rightarrow 2γm1=4\dfrac{2}{{{\gamma _m}}} - 1 = 4
\Rightarrow γm1=0.5{\gamma _m} - 1 = 0.5
\Rightarrow γm=1.5{\gamma _m} = 1.5