Solveeit Logo

Question

Question: If one end of the diameter is (1, 1) and other end lies on the line \(x + y = 3\), then locus of cen...

If one end of the diameter is (1, 1) and other end lies on the line x+y=3x + y = 3, then locus of centre of circle is.

A

x+y=1x + y = 1

B

2(xy)=52 ( x - y ) = 5

C

2x+2y=52 x + 2 y = 5

D

None of these

Answer

2x+2y=52 x + 2 y = 5

Explanation

Solution

The other end is (t,3t)( t , 3 - t )

So the equation of the variable circle is

(x1)(xt)+(y1)(y3+t)=0( x - 1 ) ( x - t ) + ( y - 1 ) ( y - 3 + t ) = 0

or x2+y2(1+t)x(4t)y+3=0x ^ { 2 } + y ^ { 2 } - ( 1 + t ) x - ( 4 - t ) y + 3 = 0

∴ The centre (α,β)( \alpha , \beta ) is given by α=1+t2,β=4t2\alpha = \frac { 1 + t } { 2 } , \beta = \frac { 4 - t } { 2 }

2α+2β=52 \alpha + 2 \beta = 5

Hence, the locus is 2x+2y=52 x + 2 y = 5 .