Solveeit Logo

Question

Mathematics Question on Conic sections

If one end of a focal chord of the parabola, y2=16xy^2 = 16x is at (1,4),(1, 4), then the length of this focal chord is

A

25

B

24

C

20

D

22

Answer

25

Explanation

Solution

y2=4ax=16xa=4y^2 = 4ax = 16x \Rightarrow a = 4
A(1,4) \Rightarrow 2.4.t1_1 = 4 t1=12\Rightarrow \, t_1 \, = \, \frac{1}{2}
\therefore \, length of focal chord =s(t+1t)2 = s \bigg(t + \frac{1}{t}\bigg)^2
=4(12+2)2=4,254=25= 4 \bigg(\frac{1}{2} + 2\bigg)^2 \, = 4, \frac{25}{4} \, = 25