Solveeit Logo

Question

Question: If on a given base, a triangle be described such that the sum of the tangents of the base angles is ...

If on a given base, a triangle be described such that the sum of the tangents of the base angles is constant, then the locus of the vertex is:
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Explanation

Solution

First we need to draw a triangle on the coordinate plane. We draw a triangle by assuming BCBC as the base of the triangle and the length of BC=2aBC=2a. Then, we draw a perpendicular to base at point DD. Then, we use the property of tangent in the form of trigonometric ratio, which is given by
tanθ=Perpendicularbase\tan \theta =\dfrac{\text{Perpendicular}}{\text{base}}
Then, by adding the tangents of the base angles and solving these further we get the desired answer.

Complete step by step answer:
We have been given that a triangle be described such that the sum of the tangents of the base angles is constant.
Let us draw a diagram on the coordinate plane by assuming that the given base of the triangle is BCBC and the length of BC=2aBC=2a

Let the coordinates of B(a,0)B\left( -a,0 \right) and C(a,0)C\left( a,0 \right). Also, let the coordinates of A(h,k)A\left( h,k \right).
We draw a perpendicular from AA to base BCBC, which meets BCBC at point DD.
So, we have OB=OC=a,OD=h,AD=kOB=OC=a,OD=h,AD=k .
Now, we have given that the sum of the tangents of the base angles is constant.
So, we have tanθ1+tanθ2=c.....(i)\tan {{\theta }_{1}}+\tan {{\theta }_{2}}=c.....(i) where, c=constantc=\text{constant}
Now, let us consider ΔABD\Delta ABD,
Now we know that tanθ=Perpendicularbase\tan \theta =\dfrac{\text{Perpendicular}}{\text{base}}
So, we have tanθ1=ADBD\tan {{\theta }_{1}}=\dfrac{AD}{BD}
Now, substituting values, we get
tanθ1=kOB+OD tanθ1=ka+h \begin{aligned} & \Rightarrow \tan {{\theta }_{1}}=\dfrac{k}{OB+OD} \\\ & \Rightarrow \tan {{\theta }_{1}}=\dfrac{k}{a+h} \\\ \end{aligned}
Now, let us consider ΔADC\Delta ADC,
Now we know that tanθ=Perpendicularbase\tan \theta =\dfrac{\text{Perpendicular}}{\text{base}}
So, we have tanθ2=ADDC\tan {{\theta }_{2}}=\dfrac{AD}{DC}
Now, substituting values, we get
tanθ2=kOCOD tanθ2=kah \begin{aligned} & \Rightarrow \tan {{\theta }_{2}}=\dfrac{k}{OC-OD} \\\ & \Rightarrow \tan {{\theta }_{2}}=\dfrac{k}{a-h} \\\ \end{aligned}
Now, substituting the values in equation (i), we get
tanθ1+tanθ2=c ka+h+kah=c \begin{aligned} & \tan {{\theta }_{1}}+\tan {{\theta }_{2}}=c \\\ & \Rightarrow \dfrac{k}{a+h}+\dfrac{k}{a-h}=c \\\ \end{aligned}
Now, solving further we have
k(ah)+k(a+h)(a+h)(ah)=c\Rightarrow \dfrac{k\left( a-h \right)+k\left( a+h \right)}{\left( a+h \right)\left( a-h \right)}=c
Now, we know that (x+y)(xy)=x2y2\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}
So, we have
k(ah)+k(a+h)a2h2=c akkh+ak+kh=c(a2h2) 2ak=c(a2h2) \begin{aligned} & \dfrac{k\left( a-h \right)+k\left( a+h \right)}{{{a}^{2}}-{{h}^{2}}}=c \\\ & \Rightarrow ak-kh+ak+kh=c\left( {{a}^{2}}-{{h}^{2}} \right) \\\ & \Rightarrow 2ak=c\left( {{a}^{2}}-{{h}^{2}} \right) \\\ \end{aligned}
Therefore we can write
2ak=ca2ch2 ch2=ca22ak h2=ca2c2akc h2=2ac(kca2) \begin{aligned} & \Rightarrow 2ak=c{{a}^{2}}-c{{h}^{2}} \\\ & \Rightarrow c{{h}^{2}}=c{{a}^{2}}-2ak \\\ & \Rightarrow {{h}^{2}}=\dfrac{c{{a}^{2}}}{c}-\dfrac{2ak}{c} \\\ & \Rightarrow {{h}^{2}}=\dfrac{-2a}{c}\left( k-\dfrac{ca}{2} \right) \\\ \end{aligned}
Now, if we replace hh by xx and kk by yy, we get
x2=2ac(yca2)\Rightarrow {{x}^{2}}=\dfrac{-2a}{c}\left( y-\dfrac{ca}{2} \right)
Now, we know that the equation of parabola is given by
yk=a(xh)2 xh=a(yk)2 \begin{aligned} & \Rightarrow y-k=a{{\left( x-h \right)}^{2}} \\\ & \Rightarrow x-h\text{=}a{{\left( y-k \right)}^{2}} \\\ \end{aligned}
So, the equation we get is comparable to parabola.
So, the locus of the vertex is parabola.
Option B is the correct answer.

Note:
When we draw a diagram we can take vertex A,B,CA,B,C anywhere. The equations of circle, hyperbola and ellipse are as follows:
Circle (xh)2+(yk)2=r2 Ellipse (xh)2a2+(yk)2b2=1 Hyperbola (xh)2a2(yk)2b2=1 \begin{aligned} & \text{Circle }{{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}} \\\ & \text{Ellipse }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\\ & \text{Hyperbola }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\\ \end{aligned}